Return to search

Analysis of giant-nucleated cell formation following X-ray and proton irradiations

Radiation-induced genetic instability has been observed in survivors of irradiated cancerous and normal cells in vitro and in vivo and has been determined in different forms, such as delayed cell death, chromosomal aberration or mutation. A well defined and characterized normal human-diploid AG1522 fibroblast cell line was used to study giant-nucleated cell (GCs) formation as the ultimate endpoint of this research. The average nuclear cross-sectional areas of the AG1522 cells were measured in um^2. The doubling time required by the AG1522 cells to divide was measured. The potential toxicity of the Hoechst dye at a working concentration on the live AG1522 cells was assessed. The yield of giant cells was determined at 7, 14 and 21 days after exposure to equivalent clinical doses of 0.2, 1 or 2 Gy of X-ray or proton irradiation. Significant differences were found to exist between X-ray or proton irradiation when compared with sham-irradiated control populations. The frequency of GCs induced by X-rays was also compared to those formed in proton irradiated cultures. The results confirm that 1 Gy X-rays are shown to induce higher rates of mitotically arrested GCs, increasing continually over time up to 21 days post-irradiation. The yield of GCs was significantly greater (10%) compared to those formed in proton populations (2%) 21 days postirradiation. The GCs can undergo a prolonged mitotic arrest that significantly increases the length of cell cycle. The arrest of GCs at the mitotic phase for longer periods of time might be indicative of a strategy for cell survival, as it increases the time available for DNA repair and enables an alternative route to division for the cells. However, the reduction in their formation 21 days after both types of radiation might favour GCs formation, ultimately contributing to carcinogenesis or cancer therapy resistance. The X-ray experiments revealed a dose-dependent increase in the GCs up to 14 days after irradiation. Although the proton irradiation was less efficient in producing GCs, their frequency was elevated in a dose-dependent manner 7 days after irradiation, with persistent expression of nuclear deformity as an indicator of genetic instability. In addition to the quantification of the GCs, the proliferation of a small fraction of giant cells formed at 14 days after 0.2 Gy of proton irradiation was observed to divide into asymmetrical, normal-sized daughter cells. These results might have important implications in evaluating risk estimates, or could act as a potential radioprotective assay for a dose-limiting parameter for delayed effects in healthy tissues during radiation therapy treatment.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:701584
Date January 2016
CreatorsAlmahwasi, Ashraf A.
ContributorsRegan, Patrick H.
PublisherUniversity of Surrey
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://epubs.surrey.ac.uk/812795/

Page generated in 0.0023 seconds