Return to search

Theory of quantum gravitational decoherence

As quantum systems can never be isolated from their environment entirely, it is expected that the spacetime fluctuations will influence their evolution. In particular, the environmental interaction may cause the loss of quantum superpositions, or decoherence. In this thesis, we examine the effects of the quantised environmental background on a range of bosonic fields in the formalism of open quantum systems. We first quantise linearised gravity in a gauge invariant way, using Dirac's constraint quantisation. We then use the influence functional technique to obtain an exact master equation for general bosonic matter interacting with weak gravity. As an application of this, we investigate the decoherence of free scalar, electromagnetic and gravitational fields. For long-time decoherence, under the Markov approximation, the dissipative terms in the master equation vanish, leading to no decay of quantum interferences. As a short-time effect, we study the master equation for a many particle state of a free scalar field, massive or massless and relativistic or non-relativistic. We find that in this case, the particles exhibit a counterintuitive behaviour of bundling towards the same quantum state that is not shared by the single particle master equation. Such collective effects, as well as possible long-time decoherence for fields in an external potential may have important implications in setting limits for precision measurements and astronomical observations.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:701787
Date January 2016
CreatorsOniga, Teodora
PublisherUniversity of Aberdeen
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=231085

Page generated in 0.0026 seconds