Return to search

Multisensory integration of spatial cues in old age

Spatial navigation is essential for everyday function. It is successfully achieved by combining internally generated information – such vestibular and self-motion cues (known as path integration) – with external sources of information such as visual landmarks. These multiple sources and sensory domains are often associated with uncertainty and can provide conflicting information. The key to successful navigation is therefore how to integrate information from these internal and external sources in the best way. Healthy younger adults do this in a statistically optimal fashion by considering the perceived reliability of a cue during integration, consistent with the rules of Bayesian integration. However, the precise impact of ageing on the component senses of path integration and integration of such self-motion with external information is currently unclear. Given that impaired spatial ability is a common problem associated with ageing and is often a primary indicator of Alzheimer’s disease, this thesis asks whether age-related navigational impairments are related to fundamental deficits in the components of path integration and/or inadequate integration of spatial cues. Part 1 focussed on how ageing impacts the vestibular, kinaesthetic and visual components of path integration during linear navigation in the real world. Using path reproduction, distance estimation and depth perception tasks, I found that older adults showed no performance deficits in conditions that replicated those of everyday walking when visual and self-motion cues were present. However, they were impaired when relying on vestibular information alone. My results suggest that older adults are especially vulnerable to sensory deprivation but that weaker sensory domains can be compensated for by other sensory information, potentially by integrating different spatial cues in a Bayesian fashion: where the impact of unreliable/diminished senses can be minimised. Part 2 developed the conclusions of Part 1 by testing younger and older adults’ integration of visual landmarks and self-motion information during a simple homing task. I investigated the hypothesis that the integration of spatial information from multiple sensory domains is driven by Bayesian principles and that old age may affect the efficiency and elasticity of reliability-driven integration. Younger and older participants navigated to a previously visited location using self-motion and/or visual information. In some trials there was a conflict of information, which revealed the relative influence of self-motion and visual landmarks on behaviour. Findings revealed that both younger and older adults integrated visual and self-motion information to improve accuracy and precision, but older adults did not place as much influence on visual information as would have been optimal. This may have been the result of increased noise in the underlying spatial representations of older adults. Furthermore, older adults did not effectively re-weight visual and self-motion cues in line with the changing reliability of visual information, suggesting diminished plasticity in the underlying spatial representations. However, further development of the testing paradigm would strengthen support for these findings. Together, the findings of Part 2 suggest that increased neural noise and the suboptimal weighting of spatial cues might contribute to the common problems with navigation experienced by many older adults. This thesis provides original evidence for age-related changes to multisensory integration of spatial cues. Path integration abilities are relatively preserved when older adults navigate linear paths in the real world, despite loss of vestibular function. However, navigation is affected by old age when the task becomes more complex. Multisensory integration of spatial cues is partially preserved but it is not fully efficient. I offer evidence that the navigational impairments common to old age are related to fundamental deficits in the components of path integration, task complexity, and suboptimal integration of spatial cues. Crucially however, path integration is preserved sufficiently in older adults that they are able to navigate in small scale with relative success.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:702238
Date January 2015
CreatorsBates, Sarah Louise
ContributorsMorris, Richard ; Olverman, Hj ; Wolbers, Thomas
PublisherUniversity of Edinburgh
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/1842/19530

Page generated in 0.0024 seconds