Return to search

Indirect studies of astrophysical reaction rates through transfer reactions

The work in this thesis describes two experiments which use transfer reactions to perform spectroscopic studies of nuclei in order to improve reaction rates in astrophysical environments. The first experiment is an indirect study of the 34S(p,γ)35Cl reaction rate at energies relevant to classical novae temperatures. By reducing uncertainties in this reaction it may be possible to use 32S/34S isotopic ratio as a diagnostic tool to determine pre-solar grain paternity. A study of the 34S(3He,d)35Cl transfer reaction was performed to identify energy levels in the astrophysically relevant energy region and assign spin and parity to these new states. A new reaction rate has been calculated from this spectroscopic information and is the first experimental measurement of the 34S(p,γ)35Cl reaction rate. Using this new rate it was concluded that it is now possible to determine the paternity of pre-solar grains using the 32S/34S isotopic ratio. The second experiment measured two proton transfer reactions, (3He,d) and (α,t), with the aim of making spin assignments of states above the neutron threshold in 27Al. Combined with information from complementary experiments this information would be used to calculate new 26Al(n,p/α) reaction rates. Direct comparison of the two transfer reactions should allow for low and high spin states to be identified, however due to lower than expected cross sections useful information could not be extracted from the (α,t) reaction. The experimental resolution was insufficient to resolve individual states with the (3He,d) reaction, however due to the selectivity of the reaction it appears that many of the previously known states show low spin behaviour and are likely not relevant to the reaction rate at astrophysical temperatures. In addition, the non-observation of 23 states known to exist in 27Al may indicate they are high spin and further measurements of these states should be performed in order to calculate new 26Al(n,p/α) reaction rates.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:707150
Date January 2017
CreatorsGillespie, Stephen
ContributorsBarton, Charles
PublisherUniversity of York
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://etheses.whiterose.ac.uk/16376/

Page generated in 0.0025 seconds