Return to search

Perivascular stem cells at the crossroads of tissue regeneration and pathology

Pericytes represent a population of potential mesenchymal stem cells (MSC) that reside within a perivascular niche until they are required in normal homeostasis and the response to injury. Their mesenchymal capacities for multipotent differentiation, immune modulation and release of trophic factors hold great promise for regenerative therapies. Pathological expression of these potentials has been described in disease states, while acute or chronic inflammation following injury can lead to the production of signalling molecules that ultimately drive these progenitors to a fibrotic fate. The aim of this work was to explore how fate decisions of pericytes are regulated by their niche (in the setting of osteogenesis), and in the response to acute and chronic injury (in the setting of fibrosis). It was hypothesized that interactions between pericytes and endothelial cells (EC) within their perivascular niche are responsible for regulating mesenchymal differentiation. The osteogenic, adipogenic and chondrogenic potential of pericytes following isolation from multiple human organs was confirmed. The interactions between pericytes and EC in 2D and 3D coculture and the production of basement membrane proteins in these settings were confirmed. The osteogenic differentiation of pericytes was accelerated by EC but no influence of EC on the adipogenic and chondrogenic differentiation of pericytes was detected. Furthermore, data indicated that the influence on pericyte osteogenic potential by EC may occur through wnt signaling. The activation of TGFβ (transforming growth factor beta) through αv integrins has been suggested as central mediator of fibrosis in multiple organs. We hypothesized that selective αv integrin deletions in PDGFRβ (platelet derived growth factor receptor beta) expressing pericytes identifies a targetable pathway regulating fibrosis in skeletal muscle. We report that PDGFRβ-Cre inactivates genes in murine skeletal muscle pericytes with high efficiency. Deletion of the αv integrin subunit in pericytes protected mice from chemical injury induced skeletal muscle fibrosis. Pharmacological blockade of αv integrins by a novel small molecule (CWHM 12) attenuated muscle fibrosis, even when administered after fibrosis was established.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:712292
Date January 2015
CreatorsMurray, Iain Robert
ContributorsPeault, Bruno ; Ahmed, Asif ; Henderson, Neil
PublisherUniversity of Edinburgh
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/1842/21092

Page generated in 0.0019 seconds