Return to search

Traction control for electric vehicles with independently driven wheels

The necessity to reduce climate related emissions is driving the electrication of transportation. As well as reducing emissions Electric Vehicles (EV) have the capability of improving traction and vehicle stability. Unlike a conventional vehicle that uses a single Internal Combustion Engine (ICE) to drive one or both axles, an EV can have an electric machine driving each of the wheels independently. This opens up the possibility of using the electric machines as an actuator for traction control. In conventional vehicles the hydraulic brakes together with the ICE are used to actuate traction control. The advantages of electric machines over hydraulic brakes are precise measurable torque, higher bandwidth, bidirectional torque and kinetic energy recovery. A review of the literature shows that a wide range of control methods is used for traction control of EVs. These are mainly focused on control of an individual wheel, with only a minority being advanced to the experimental stage of verication. Integrated approaches to the control of multiple wheels are generally lacking, as well as verication that tests the vehicle's directional stability. A large body of the literature uses the slip ratio of the wheel as the key control variable. A signicant challenge for slip-based traction control is the detection of vehicle velocity together with the calculation of slip around zero vehicle velocity. A traction control method that does not depend upon vehicle velocity detection or slip ratio is Maximum Transmissible Torque Estimation (MTTE), after Yin et al. (2009). In this thesis an MTTE based method is developed for a full size electric vehicle with independently driven rear wheels. The original MTTE method for a single wheel is analysed using a simple quarter vehicle model. The simulation results of Yin et al. (2009) are in general reproducible although a lack of data in the original research prevents a quantitative comparison. A modication is proposed to the rate compensation term. Simulation results show that the proposed modication ensures that the torque demand is delivered to the wheel under normal driving conditions, this includes negative torque demand which is not possible for MTTE, Yin et al. (2009). Enabling negative torque demands means that the proposed traction control is compatible with higher level stability control such as torque vectoring. The performance of the controller is veried through a combination of simulation and vehicle based experiments. Compared with experiments, simulations are fast and inexpensive and can provide greater insight as all of the variables are observable. To simulate the controller a high delity vehicle model is required. To achieve this it is necessary to initially validate the model against experimental data. Simulation verication using a validated vehicle model is lacking in the literature. A full vehicle model is developed for this thesis using Dymola, a multi-body system software tool. The model includes the full suspension geometry of the vehicle. Pacejka's "Magic Formula" is used for the tyre model. The model is validated using Delta Motorsport's E4 coupe. The two Wheel Independent Drive (2WID) MTTE-based traction controller is derived from the equations of motion for the vehicle. This shows that the maximum transmissible torque for one driven wheel is dependent on the friction force of both driven wheels, which has not been shown before. An equal torque strategy is proposed to maintain vehicle directional stability on mixed-μ roads. For verication the 2WID-MTTE controller is simulated on the validated vehicle model described above. The proposed 2WID-MTTE controller is benchmarked against a similar method without the equal torque strategy, termed Independent MTTE, as well as a method combining Direct Yaw Control (DYC) and Independent MTTE. The three controllers are simulated for a vehicle accelerating onto a split-μ road. The results show that the proposed 2WID-MTTE controller prevents the vehicle spinning o the road when compared to Independent MTTE. 2WID-MTTE is found to be as eective as DYC+Independent MTTE but is simpler in design and requires fewer sensors. The proposed 2WID-MTTE controller is also simulated for a vehicle accelerating from a low- to high-μ road. This is done to assess the controller's ability to return to normal operation after a traction event, and because there are no simulations of this type for MTTE control on a high delity vehicle model in the literature. The results show that oscillations in the tyre-road friction force as the wheel transitions across the change in μ somewhat impede the return of the controller's output torque to the torque demand. The 2WID-MTTE controller is implemented on Delta Motorsport's E4 coupe by integrating it into the vehicle's Powertrain Control Module (PCM). This is experimentally tested for the vehicle accelerating across a range of surfaces at the MIRA proving ground. The experimental tests include high- to low-μ, low- to high-μ and split-μ roads. The results for the high- to low-μ road tests show that 2WID-MTTE control prevents the vehicle spinning when compared to no control. Similar to the simulation, the results of the low- to high-μ road experiment show that the controller output torque is also impeded from returning to the demand torque. Observation of the estimated friction force together with the on-board accelerometers conrm that this is due to tyre friction oscillating after the transition. This justies the use of a tyre model with transient dynamics. The proposed 2WID-MTTE controller uses wheel velocity and torque feedback to estimate friction torque. These signals are obtained from the vehicle's motor controllers via a Controlled Area Network (CAN) bus. The 2WID-MTTE controller is benchmarked against Independent MTTE that uses wheel velocity measured directly from the wheel hub sensors and the torque demand to estimate friction torque. The results show that the delays introduced by the CAN bus increase wheel slip for the 2WID-MTTE controller. However, the equal torque strategy means that 2WID-MTTE controller maintains greater vehicle directional stability, which is more important than the pursuit of greater acceleration.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:730302
Date January 2016
CreatorsEwin, Nathan
ContributorsHowey, David ; McCulloch, Malcolm
PublisherUniversity of Oxford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttps://ora.ox.ac.uk/objects/uuid:dfc99786-fe17-4225-bd91-3ab83416981f

Page generated in 0.0359 seconds