Return to search

DNA methylation dynamics and epigenetic diversity in development

Epigenetics refers to heritable changes in phenotype without alterations to the genotype. Epigenetic changes involve two main mechanisms: DNA methylation and histone modification. Methylation of DNA at cytosine bases is the best-studied epigenetic process to date. CpG methylation states are thought to be maintained throughout cell divisions. However, loss of DNA methylation or DNA demethylation has been observed in specific stages of mammalian development. Such prominent examples of developmental DNA demethylation processes occur in developing primordial germ cells and in preimplantation embryos. However, little is known about DNA methylation changes of other tissues in mammalian development. Therefore, the first aim of this PhD study was to investigate changing nuclear distributions and levels of DNA methylation during development in order to discover dynamic variations amongst developing mouse tissues. In addition, a transgenic MBD-GFP mouse was employed to visualise DNA methylation in tissues. Several hypothetical mechanisms for the enzymatic removal of 5mC have been proposed. One of the proposed candidates is Tet-mediated successive oxidation of 5mC to generate 5hmC, 5fC and 5caC. 5hmC has therefore been considered as a transient intermediate in an active cytosine demethylation pathway. Nevertheless, some studies suggest that 5hmC may also function as an epigenetic modification in its own right. Thus, the second aim of this study was to address the research question of how and where 5hmC originates during development. In order to be able to identify tissues undergoing dynamic nuclear changes in DNA methylation and hydroxymethylation states during early mouse development, new working protocols for immunodetection of 5mC and 5hmC on tissue cryosections were required. The protocol optimisation for 5mC immunodetection is discussed in greater detail in Chapter 3. It was found that DNA methylation immunostaining of cryosections required heat-mediated DNA denaturation, which was partly compatible with protein immunostaining. Next, Chapter 4 focuses on identifying tissues undergoing dynamic changes in 5mC and 5hmC patterns during development from E9.5 to E14.5 mouse embryonic stages, using optimised immunohistochemistry protocols. These protocols revealed interesting dynamic observations of 5mC and 5hmC in the developing cerebral neocortex, surface ectoderm, liver, red blood cells, diaphragm and heart. These findings suggested that dynamic changes of 5mC and 5hmC during neocortical and compact myocardial development were in good agreement with a model where the formation of 5hmC may correlate with the loss of old 5mC, but the observations were also consistent with an involvement of de novo methylation in the generation of 5hmC. In other developing tissues, including surface ectoderm, liver, red blood cells, diaphragm and cardiac trabeculae, dynamic changes in 5mC and 5hmC levels were in line with a model where the 5hmC may act as a new epigenetic mark that functions independently. The optimised protocol also confirmed DNA demethylation of the germ cells at E12.5. The presence of three Tet family enzymes (Tet1, Tet2, Tet3) and de novo methyltransferase DNMT3A in mouse E12.5 tissues is reported in the second part of Chapter 4. It was found that Tet1, Tet2, Tet3 and Dnmt3a were present at detectable levels in neocortex, liver, diaphragm and heart. Contrastingly, no apparent signals for Tet1, Tet2, Tet3 and Dnmt3a were observed in red blood cells. This result was expected due to the very low levels of 5hmC staining in E12.5 red blood cells. The third aim of the present study was to investigate the existence of crosstalk between various epigenetic mechanisms. Thus, Chapter 5 focuses on exploring the relationship between 5mC and repressive histone marks, H3K9me3 and H3K27me3. Histone methylation dynamics at H3K9 and H3K27 were observed during mouse fetal development in neocortex and heart. The overall distribution patterns of H3K9me3 and H3K27me3 demonstrated strong association with developmental changes in 5mC, suggesting that these three repressive epigenetic marks work in concert to establish a silenced state of heterochromatin. Chapter 6, on the other hand, focuses on visualising DNA methylation in tissues using mouse transgenic tools. It was found that brain, liver, heart and neural tube expressed high levels of GFP. But no apparent developmental dynamics of GFP was observed. In conclusion, this study will contribute scientific understanding of dynamic DNA methylation and nuclear heterochromatin organisation during mammalian development, and its role in the specification and maintenance of cell lineages forming tissues and organs. This knowledge will provide insight into current barriers to cell fate reprogramming, which will be of benefit to cell regenerative biomedical technologies.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:738784
Date January 2017
CreatorsAbd Hadi, Nur Annies Binti
ContributorsPennings, Sari ; Meehan, Richard
PublisherUniversity of Edinburgh
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/1842/28778

Page generated in 0.0026 seconds