Increasing plastic consumption has created an alerting problem with waste disposal of the mixed waste plastics once the recyclable fractions have been recovered. The percentage sent to landfill of the generated mixed plastic waste amounts to one third of the total. Liquid fuel recovery from mixed plastic waste is possible using pyrolysis as a tertiary recycling process. The focus of this study was to obtain useful liquid product recovered from the pyrolysis of a variety of commercial mixed plastic waste utilising a pilot scale fluidised bed reactor of 1kg/hr processing capacity. The influence of residence time (1.78 to 2.74s), feedstock variation and reaction temperature (500 – 550oC) were investigated to optimise the quality of the wax products. Characterisation of the mixed plastic feedstocks through TGA, DSC and FTIR analysis was carried out to lay the foundation of the pyrolysis conditions. Understanding the fuel quality and product distribution was essential in assessing the key properties such as melting point and viscosity in the optimisation process. Key findings of the research concluded that increasing residence time has the strongest effect on reducing the melting point (up to 14oC) of the liquid product across all studied feedstocks although the magnitude of the effect greatly depends upon the initial feedstock composition. Changes is the average melting point correspond to a shift in the average carbon number distribution of the product. Feedstock and process parameters variability were also found to greatly affect the final product quality resulting in a versatile product composition as well as the product yields that varied between 27 and 60% w.t.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:753028 |
Date | January 2018 |
Creators | Stamouli, Konstantina |
Publisher | University of Birmingham |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://etheses.bham.ac.uk//id/eprint/8268/ |
Page generated in 0.0146 seconds