Return to search

Measurement of the Rayleigh scattering length and background contributions during early data taking phases at SNO+

SNO+ is a multipurpose neutrino experiment located at SNOLAB. Its key purpose is investigating the neutrinoless double beta decay of 130Te, amongst other physics goals such as solar and reactor neutrino oscillations. The success of the experiment depends on the understanding of the optical properties of the detection materials, as well as a good understanding of potential background contributions. The calibration system used to study the Rayleigh scattering properties of the detector is presented and methods to model the system in Monte Carlo simulations based on commissioning run data are introduced. Furthermore, the analysis of the scattering length in a water-filled detector is described and demonstrated on a fake water-fill data set with an accuracy of the measured scattering length scaling factor of 1:1 %. The evaluation of the systematic uncertainties is presented. The background contributions originating from the 238U and 232Th decay chains during early SNO+ run phases are constrained using 214Bi214Po and 212Bi212Po delayed coincidences. The methods to identify these coincidences are presented and the challenges to apply them to an intermediate partial water-scintillator phase are discussed. It is shown that for the current target background rates the 238U and 232Th chain contents can be determined with an uncertainty of 4:1% and 27:6%.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:765884
Date January 2017
CreatorsLangrock, Stefanie
PublisherQueen Mary, University of London
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://qmro.qmul.ac.uk/xmlui/handle/123456789/24647

Page generated in 0.0025 seconds