Return to search

Numerical modelling of braiding processes in gravel-bed rivers

Gravel bed braided rivers are distinctive natural environments that provide a wide range of key environmental, economic and recreational services. There is, however, a growing concern that over the twentieth century, an increasing number of braided rivers have metamorphosed into wandering or single thread channels, representing a loss of key habitats, geodiversity and amenity. While in some situations, shifts in channel pattern may be unambiguously linked to abrupt changes in flow or sediment supply, the lack of a theoretical basis underpinning the development and maintenance of braiding makes identification of the cause and effect of channel metamorphosis hazardous. A growing body of research has suggested that the transition between channel patterns may depend on the poorly understood interaction between the flow regime, sediment supply and vegetation colonisation. Such interactions are governed by critical thresholds, due to changes in flow resistance and bank strength associated with the distribution, form and intensity of vegetation colonisation. Subtle changes in flow or sediment supply that promote vegetation growth or indeed remove it through inundation or attrition. This can lead to complex non-linear shifts in the balance of forces that govern sediment transport and bedform morphodynamics, ultimately resulting in one-way changes in channel morphology. There is, therefore, a critical need to develop a quantitative understanding of these feedbacks in order to design sustainable river management programmes that seek to optimize the ecological and socio-economic benefits these rivers offer. During the last three decades, significant advances in the understanding of the morphodynamics of braided rivers have been made through a combination of field and physical experimentation. More recently, the emerging field of numerical modelling has created a new avenue to investigate the processes that govern channel dynamics. While this methodology offers significant promise through the construction of virtual experiments that examine the spectrum of drivers and responses of river systems, such models require careful and critical evaluation before they can be used to guide management practice. The wider goal of this research is to explore the application of a numerical modelling to investigate the feedbacks associated with the development and maintenance of braiding. Specifically, the state-of-the-art numerical model, BASEMENT, was used to examine channel responses to steady, and unsteady flow regimes, with and without the representation of vegetation. The research focuses on four main contributions: 1. The development of a systematic framework to quantify the evolving form and processes of braided rivers that can be used as part of a comprehensive approach to model validation. 2. Simulation of braiding development and maintenance using BASEMENT under steady flow conditions. Model simulations based on the natural prototype of the braided River Feshie were used to examine the sensitivity of emergent channel morphologies to the model parameterisation, focusing in particular on the representation of bank erosion and gravity-driven sediment transport. A novel multi6metric framework for model validation is presented and the results demonstrate the critical importance of lateral bank migration processes in order to maintain braided morphologies under steady flow. 3. A critical evaluation of the simulation of braiding under different form of steady and unsteady flow regimes is presented. These experiments investigate how the morphodynamics of braiding vary under energetically-normalised flow regimes characterized by differences in hydrograph form (peak discharge and duration). This experiment provides a novel insight into the role of flow variation in the maintenance of braiding. 4. Finally, the feedback between flow regimes, sediment transport and vegetation growth are examined using a novel model of vegetation colonisation and die- back. Four scenarios are presented, a no-vegetation model, one based on low growth rate, one based on an intermediate growth rate, and finally a high growth rate parameterisation. These simulations provide a clear insight into the non-linear processes driving channel evolution and demonstrate how subtle changes in the balance between flow frequency and vegetation growth can lead to divergent channel patterns. In summary, this thesis aims to advance our understanding of the morphodynamics of braided rivers and the role numerical models may have in helping to interrogate their behaviour and governing controls. It is hoped that this work may contribute, albeit in a small way, to advancing the science that promotes the sustainability of these fascinating and valuable environments.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:766212
Date January 2018
CreatorsBaral, Bishnu Raj
PublisherQueen Mary, University of London
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://qmro.qmul.ac.uk/xmlui/handle/123456789/44686

Page generated in 0.0018 seconds