Return to search

Partially redundant tryptophan synthase and MYB transcription factor genes regulate indolic defense compound synthesis in Arabidopsis thaliana

In the model cruciferous plant, Arabidopsis thaliana, tryptophan (Trp) is a focal point for growth and defense as it is used for the production of secondary metabolites including the growth hormone indole-3-acetic acid (IAA, or auxin), and two classes of defense compounds: indole glucosinolates (IGs) and camalexin. Trp metabolism in plants is of general importance to agriculture because animals (including humans) cannot synthesize Trp and must obtain it from their diet.

Questions remain about the synthesis and regulation of Trp and how it relates to secondary metabolism in Arabidopsis. In this thesis it is shown that IGs are a sink for Trp metabolism because auxotrophic mutants deficient in Trp production are suppressed in combination with the IG-deficient cyp79B2 cyp79B3 mutant and enhanced in combination with IG overproducing mutant, atr1D.

Because Trp auxotrophic mutants were found to produce IGs, the four predicted Arabidopsis Trp Synthase Beta genes (TSB1, TSB2, TSB3 and TSBt2) were examined for their role in Trp primary and secondary metabolism. It was determined that members of this gene family, while being redundant for enzyme activity, may have unique functions in channeling Trp to different secondary endpoints. tsb1 tsb2 plants display a healthier phenotype and produce lower IG levels than the single tsb1 mutants, in contrast to tsb1 tsbt2 plants, which have elevated IG production and an enhanced auxotrophic phenotype. tsb2 tsbt2 plants are indiscernible from WT. Gene expression in Trp biosynthetic pathway steps, IG biosynthesis genes, and regulatory TFs is dysregulated in these mutants.

In a second part of this thesis, transcriptional regulation of IG synthesis was examined with respect to tissue specificity and stress. In collaboration with Judith Bender's laboratory at Brown University, the function of a subfamily of three Myb transcription factors that have been implicated in regulating IG biosynthesis genes was studied. Using combinations of Myb knockout mutants and GUS reporter plants, tissue specific roles for MYB34 and MYB51 in root and shoot tissues, respectively, were found. In addition, roles were discovered for MYB34 in mediating anti-herbivory signals, and for both MYB51 and MYB122 in regulating defense against microbial pathogens.

Identiferoai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/13160
Date24 September 2015
CreatorsHogan, Brad John
Source SetsBoston University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation

Page generated in 0.0021 seconds