Return to search

Edited magnetic resonance spectroscopy detects an age-related decline in monkey brain GABA levels

Recent research had shown a correlation between aging and decreasing Gamma-aminobutyric acid (GABA) the primary inhibitory neurotransmitter in the brain. However, how GABA level varies with age in the medial portion of the brain has not yet been studied. The purpose of this study was to investigate the GABA level variation with age focusing on posterior cingulate cortex, which is the 'core hub' of the Default mode network. In this study, 14 monkeys between 4 and 21 years were recruited and MEGA-PRESS to measure GABA level in order to explorea potential link between aging and GABA. Our results showed that a correlation between age and GABA+/Creatine ratio was at the edge of significance (r= -0.523, p=0.081). There was also a near-significant trend between grey matter/ white matter ratio and GABA+/Creatine ratio (r = -0.518, p=0.0848). Meanwhile, the correlation between age and grey matter showed no significance (r= -0.028, p = 0.93). Therefore, age and grey matter/ white matter ratio accounts for different part of R-squared as independent variables for predicting GABA levels. These finding suggest that there the internal neurochemical variation of GABA levels in the nonhuman primate is associated with normal aging and brain structural decline.

Identiferoai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/15623
Date12 March 2016
CreatorsHe, Xuanzi
Source SetsBoston University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation

Page generated in 0.0023 seconds