Return to search

Modeling and experimental analysis of electrospinning bending region physics in determining fiber diameter for hydrophilic polymer solvent systems

Electrospinning produces submicron fibers from a wide range of polymer/solvent systems that enable a variety of different applications. In electrospinning process, a straight polymer/solvent charged jet is initially formed, followed by a circular moving jet in the shape of a cone, called the bending region. The process physics in the bending region are difficult to study since the jet diameter cannot be measured directly due to its rapid motion and small size (~microns and smaller), and due to complex coupling of multiple forces, mass transport, and changing jet geometry. Since the solutions studied are hydrophilic, they readily absorb ambient moisture. This thesis explores the role of the bending region in determining the resulting electrospun fiber diameter through a combined experimental and modeling analysis for a variety of hydrophilic polymer/solvent solutions.
Electrospinning experiments were conducted over a broad range of operating conditions for 4 different polymer/solvent systems. Comparison of the final straight jet diameters to fiber diameters reveals that between 30% to 60% jet thinning occurs in the bending region. These experiments also reveal that relative humidity significantly affects the electrospinning process and final fiber diameter, even for non-aqueous solutions.
A model is developed to obtain insight into the bending region process physics. Important ones include understanding the mass transport for non-aqueous hydrophilic jets (including solvent evaporation and water absorption on the jet surface, radial diffusion, and axial advection), and the coupling between the mass and force balances that determines the final fiber diameter. The absorption and evaporation physics is validated by evaporation experiments. The developed model predicts fiber diameter to within of 8%, even though the solution properties and operating conditions that determines net stretching forces and net evaporation rates vary over a large range.
Model analysis reveals how the net evaporation rate affects the jet length and net stretching force, both of which ultimately determine the fiber diameter. It is also shown that the primary impact of RH on the process is through occupation of the surface states that limits solvent evaporation rate, rather than the amount of water absorbed. Correlation functions between process conditions, solution properties and the resulting fiber diameters are discussed.

Identiferoai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/20835
Date10 March 2017
CreatorsCai, Yunshen
Source SetsBoston University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation
RightsAttribution-NonCommercial-ShareAlike 4.0 International, http://creativecommons.org/licenses/by-nc-sa/4.0

Page generated in 0.0048 seconds