Return to search

Towards constructing functional protocells for origin of life studies

Earth’s crust and primordial ocean formed more than 4 billion years ago and life is believed to have originated on earth at least 3.6 billion years ago. This suggests that primitive cellular life must have evolved from non-living matter during that period of several hundred million years. To study the transition from chemistry to biology, a simple vesicular system called a protocell is an ideal model that is self-organized and contains informational or metabolic materials.

This thesis starts by exploring the replication of a model genetic material under plausible prebiotic conditions. The non-enzymatic copying of RNA was found to be catalyzed by Fe2+, which used to be abundant in aqueous environments on the early anoxic earth. Fe2+ was found to be a better catalyst of non-enzymatic RNA copying and ligation in slightly acidic to neutral pH conditions than Mg2+, the divalent cation used to catalyze these reactions in previous studies. This finding suggests that ferrous iron could have facilitated the replication and evolution of RNA on the prebiotic earth.

To gain a better understanding of the properties of protocell membranes, the impact of membrane composition and multi-bilayer structure on non-enzymatic and enzymatic biochemical reactions was studied. A fatty acid/phospholipid hybrid membrane system was proposed as a potential intermediate state in protocellular evolution. This membrane composition was investigated for its stability and permeability, two fundamental features of functional protocells. The system proved stable in the presence of divalent cations and retained permeability to small building block molecule. Vesicles with this composition were shown to host faster non-enzymatic RNA copying, and to enable enzymatic protein synthesis. To study the effects of multi-lamellarity, giant multilamellar vesicles (GMVs) were prepared by an extrusion-dialysis method. Compared with small unilamellar vesicles (SUVs), GMVs show slightly better ability to retain encapsulated RNA, while maintaining good permeability for small charged molecules. The multilamellar structure also promotes non-enzymatic RNA copying, providing preliminary evidence that membranes could also mediate catalytic functions as well as acting as a compartment. / 2020-07-02T00:00:00Z

Identiferoai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/30744
Date03 July 2018
CreatorsJin, Lin
ContributorsSzostak, Jack W.
Source SetsBoston University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation

Page generated in 0.0121 seconds