Return to search

Variational methods and their applications to frustrated quantum spin models

Thesis (Ph.D.)--Boston University / PLEASE NOTE: Boston University Libraries did not receive an Authorization To Manage form for this thesis or dissertation. It is therefore not openly accessible, though it may be available by request. If you are the author or principal advisor of this work and would like to request open access for it, please contact us at open-help@bu.edu. Thank you. / Quantum spin models are useful in many areas of physics, such as strongly correlated materials and quantum phase transitions, or, generally, quantum many-body systems. Most of the models of interest are not analytically solvable. Therefore they are often investigated using computational methods. However, spin models with frustrated interactions are not easily simulated numerically with existing methods, and more effective algorithms are needed. In this thesis, I will cover two areas of quantum spin research: 1. studies of several quantum spin models and 2. development of more efficient computational methods. The discussion of the computational methods and new algorithms is integrated with the physical properties of the models and new results obtained. I study the frustrated S=1/2 J1-J2 model Heisenberg model, the J-Q model, the Ising model with a transverse magnetic field, and a two-orbital spin model describing the magnetic properties of iron pnictides. I will discuss several computational algorithms, including a cluster variational method using mean-field boundary conditions, variational quantum Monte Carlo simulation with clusters-based wave functions, as well as a method I call "optilization" -- an algorithm constructed in order to accelerate the process of optimization with a large number of parameters. I apply it to matrix product states. / 2031-01-02

Identiferoai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/32030
Date January 2012
CreatorsLiu, Chen
PublisherBoston University
Source SetsBoston University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation

Page generated in 0.0021 seconds