Return to search

Dissecting the multi-functional role of heterogeneous nuclear ribonucleoprotein H1 in methamphetamine addiction traits

Both genetic and environment factors influence susceptibility to substance use disorders. However, the genetic basis of these disorders is largely unknown. We previously identified Hnrnph1 (heterogeneous nuclear ribonucleoprotein H1) as a quantitative trait gene for reduced methamphetamine (MA) stimulant sensitivity. Mutation (heterozygous deletion of a small region in the first coding exon) in Hnrnph1 also decreased MA reinforcement, reward, and dopamine release. 5’UTR genetic variants in Hnrnph1 support reduced 5’UTR usage and hnRNP H protein expression as a molecular mechanism underlying the reduced MA-induced psychostimulant response. Interestingly, Hnrnph1 mutant mice show a two-fold increase in hnRNP H protein in the striatal synaptosome with no change in whole tissue level. Proteome profiling of the synaptosome identified an increase in mitochondrial complex I and V proteins that rapidly decreased with MA in Hnrnph1 mutants. In contrast, the much lower level of basal mitochondrial proteins in the wild-type mice showed a rapid, MA-induced increase. Altered mitochondrial proteins associated with the Hnrnph1 mutation may contribute to reductions in MA behaviors. hnRNP H1 is an abundant RNA-binding protein in the brain, involved in all aspect of post-transcriptional regulation. We examined both baseline and MA-induced changes in hnRNP H-RNA interactions to identify targets of hnRNP H that could comprise the neurobiological mechanisms of cellular adaptations occurring following MA exposure. hnRNP H post-transcriptionally regulates a set of mRNA transcripts in the striatum involved in psychostimulant-induced synaptic plasticity. MA treatment induced opposite changes in binding of hnRNP H to these mRNA transcripts between Hnrnph1 mutants versus wild-types. RNA-binding, transcriptome, and spliceome analyses triangulated on hnRNP H binding to the 3’UTR of Cacna2d2, an upregulation of Cacna2d2 transcript, and decreased 3’UTR usage of Cacna2d2 in response to MA in the Hnrnph1 mutants. Cacna2d2 codes for a presynaptic, voltage-gated calcium channel subunit that could plausibly regulate MA-induced dopamine release and behavior. The multi-omics datasets point to a dysregulation of mitochondrial function and interrelated calcium signaling as potential mechanisms underlying MA-induced dopamine release and behavior in Hnrnph1 mutants.

Identiferoai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/42321
Date24 March 2021
CreatorsRuan, Qiu T.
ContributorsBryant, Camron D.
Source SetsBoston University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation
RightsAttribution 4.0 International, http://creativecommons.org/licenses/by/4.0/

Page generated in 0.0025 seconds