Return to search

Development of methods for Omics Network inference and analysis and their application to disease modeling

With the advent of Next Generation Sequencing (NGS) technologies and the emergence of large publicly available genomics data comes an unprecedented opportunity to model biological networks through a holistic lens using a systems-based approach. Networks provide a mathematical framework for representing biological phenomena that go beyond standard one-gene-at-a-time analyses. Networks can model system-level patterns and the molecular rewiring (i.e. changes in connectivity) occurring in response to perturbations or between distinct phenotypic groups or cell types. This in turn supports the identification of putative mechanisms of actions of the biological processes under study, and thus have the potential to advance prevention and therapy. However, there are major challenges faced by researchers. Inference of biological network structures is often performed on high-dimensional data, yet is hindered by the limited sample size of high throughput omics data. Furthermore, modeling biological networks involves complex analyses capable of integrating multiple sources of omics layers and summarizing large amounts of information.

My dissertation aims to address these challenges by presenting new approaches for high-dimensional network inference with limit sample sizes as well as methods and tools for integrated network analysis applied to multiple research domains in cancer genomics. First, I introduce a novel method for reconstructing gene regulatory networks called SHINE (Structure Learning for Hierarchical Networks) and present an evaluation on simulated and real datasets including a Pan-Cancer analysis using The Cancer Genome Atlas (TCGA) data. Next, I summarize the challenges with executing and managing data processing workflows for large omics datasets on high performance computing environments and present multiple strategies for using Nextflow for reproducible scientific workflows including shine-nf - a collection of Nextflow modules for structure learning. Lastly, I introduce the methods, objects, and tools developed for the analysis of biological networks used throughout my dissertation work. Together - these contributions were used in focused analyses of understanding the molecular mechanisms of tumor maintenance and progression in subtype networks of Breast Cancer and Head and Neck Squamous Cell Carcinoma.

Identiferoai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/44045
Date18 March 2022
CreatorsFederico, Anthony N.
ContributorsMonti, Stefano
Source SetsBoston University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation

Page generated in 0.0016 seconds