Return to search

Design, characterization, and validation of a soft pneumatic exosuit for ankle-dorsiflexion assistance

Of the 795,000 people that suffer a stroke in the United States every year, 65% experience hemiparesis. Foot drop is a common gait pathology in people with lower-limb paresis and is often caused by neuropathy of the peroneal nerve that innervates the muscles responsible for ankle dorsiflexion. Foot drop can impede toe clearance and increase the risk of falling, the leading cause of injury among adults ≥65 years.

Lower-limb robotic exoskeletons have been used for gait training and can aid with walking, but current devices on the market can be heavy, expensive, and constrained to in-clinic use. Soft wearable robotic devices offer a lightweight and cost-effective alternative to traditional lower-limb exoskeletons. In particular, soft pneumatic systems have the potential to provide a high power-to-weight ratio making them ideal for a wearable application.

The soft pneumatic exosuit consists of a footplate to collect air, storage to temporarily house the collected air, and two pneumatic actuators to provide an assistive torque around the wearer’s ankle joint while walking. EMG and IMU sensors were integrated to control the opening and closing of solenoid valves so that assistive torques could be applied to the ankle joint at optimal moments during the gait cycle.

Preliminary validation of the soft pneumatic exosuit on a healthy participant demonstrated that the system could successfully deliver the air required to contract the actuators when the EMG sensors detected an increase in muscle activity. These results demonstrate that the current soft pneumatic exosuit appears to be a promising alternative to current rehabilitation exoskeletons on the market while remaining portable and low-cost. / 2025-05-24T00:00:00Z

Identiferoai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/46261
Date24 May 2023
CreatorsMori Carroll, Sean Kazuki
ContributorsRanzani, Tommaso
Source SetsBoston University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation

Page generated in 0.0026 seconds