Return to search

Effects of climate change and other anthropogenic impacts on plant phenology and wildlife health in North America

Plants and wildlife are being affected by climate change and human activities. We need to understand the patterns in these impacts to develop management strategies and policy solutions that will help us conserve ecosystems. Climate change is shifting the timing of key life stages in plants, but we do not fully understand the extent and implications of phenological shifts – or changes in the timing of seasonal events – for understudied stages like fruiting or for potential mismatches between plants in different canopy levels. Human activities and climate change impact and harm wildlife in many ways, from wildlife-vehicle collisions and lead poisoning to hurricanes and infectious diseases, but it has been difficult to form a comprehensive picture of these threats across many species and regions, and to discern which factors pose the greatest threat to at-risk species. Here, I collected and curated data from herbarium specimens and wildlife rehabilitation records to advance our understanding of the effects of climate change and human activities on plants and wildlife in North America. First, I found that metrics of first, peak, and last fruiting dates were strongly correlated between two historical datasets, suggesting that field observations and herbarium collections capture similar orders of fruiting times among plant species in New England. However, I found differences in the exact timing of first and last fruiting dates, indicating that researchers should match methodology when selecting historical records of phenology for present-day comparisons, especially when the exact timing is important. Next, I found that native trees, native shrubs, and non-native shrubs advanced their leaf-out or flowering times faster than native wildflowers advanced their flowering times with warming temperatures. As climate warming progresses, some native wildflower species, especially in warmer regions, are likely to be affected by phenological mismatch and lose access to early-season sunlight. Last, I found that human disturbances accounted for the largest proportion of wildlife injury and sickness in animals admitted to wildlife rehabilitation centers, and I identified the predominant reason for admittance for many species; these reasons included vehicle collisions, fishing incidents, and window or building collisions. I recommended possible interventions to help conserve wildlife, including using or changing wildlife road crossings, fishing and hunting regulations, lead and pesticide regulations, and disaster management plans. In this research, I compiled and analyzed innovative, newly-digitized data sources to provide new insights into the effects of climate change and human activities on plants and wildlife in North America. / 2024-09-18T00:00:00Z

Identiferoai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/46943
Date19 September 2023
CreatorsMiller, Tara King
ContributorsPrimack, Richard
Source SetsBoston University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation
RightsAttribution-NonCommercial-NoDerivatives 4.0 International, http://creativecommons.org/licenses/by-nc-nd/4.0/

Page generated in 0.0059 seconds