Return to search

Biomass Gasification: Fast Internal Circulating Fluidised Bed Gasifier Characterisation and Comparison

In 2004 the Department of Chemical and Process Engineering (CAPE) at University of Canterbury began a programme to investigate using biomass gasification integrated combined cycle (BIGCC) technology to convert waste products and residues to useful energy for the wood processing sector. This research was conducted as a part of Objective Two of the programme to develop gasification and gas cleaning technology. This project involved commissioning and characterising the operation of the Fast Internal Circulating Fluidised Bed (FICFB) gasifier and comparing its operation with a more conventional up-draught process owned and operated by Page Macrae in Mount Manganui. The wood derived gas composition of each gasifier was measured using gas chromatography and these compositions were used to calculate lower heating values (LHV). The CAPE FICFB gasifier has proven to produce successfully a gas with a lower heating value of 10400-12500 kJ/Nm³. The Page Macrae gasification process produces a low quality gas with a lower heating value of 4100-5100 kJ/Nm³. This is much lower than the CAPE gasifier since the oxidant used in the up-draught gasification process is air and the product gas is diluted by nitrogen. The Page Macrae gasification system combusts wood derived gas to produce steam for a laminar veneer lumber (LVL) processing plant so gas quality and heating value are less important than in electrical production applications. Reducing the nitrogen content of the CAPE product gas will increase the heating value of the gas. Improvements to the boiler system will reduce the amount of air required for gasification and hence reduce the nitrogen content. Further improvements to gas quality can be gained from a change in the fuel feed point from on top of the gasification column's bubbling fluidised bed to the side of the bubbling fluidised bed. The CAPE gasifier is much more complicated and requires specialised operators but produces a gas suitable for gas engine and gas turbine technology. Overall the CAPE gasification system is more suited to BIGCC applications than the Page Macrae process.

Identiferoai:union.ndltd.org:canterbury.ac.nz/oai:ir.canterbury.ac.nz:10092/1187
Date January 2006
CreatorsBrown, Jock William
PublisherUniversity of Canterbury. Chemical and Process Engineering
Source SetsUniversity of Canterbury
LanguageEnglish
Detected LanguageEnglish
TypeElectronic thesis or dissertation, Text
RightsCopyright Jock William Brown, http://library.canterbury.ac.nz/thesis/etheses_copyright.shtml
RelationNZCU

Page generated in 0.0022 seconds