Return to search

F-actin and integrin like proteins in Phytophthora cinnamomi

Tip growth is the primary form of growth in hyphal organisms and some plant cells. Tip growth in hyphae is highly dependent on F-actin, which acts to regulate and support growth. One of the models suggested for tip growth, the amebae model of tip growth, suggests that F-actin may also be the primary source of protrusive force for tip growth in some conditions, and that proteins with a similar function to animal integrins would be present an involved in tip growth (Heath and Steinberg 1999). In this thesis we examine the role of F-actin in the growth of the oomycete Phytophthora cinnamomi and the effects on growth of the F-actin disrupting compound Latrunculin B. We demonstrate that F-actin plays a critical role in the tip growth of Phytophthora cinnamomi with it's disruption causing rapid cessation in directional growth, followed by significant subapical swelling. Further more we examine Phytophthora cinnamomi for the presence of an B4 integrin like protein that has been previously reported in the oomycete Achlya bisexualis (Chitcholtan & Garrill 2005) and show that the B4 integrin like protein is not present in Phytophthora cinnamomi. These experiments help further our understanding of tip growth in Phytophthora cinnamomi an economically important plant pathogen.

Identiferoai:union.ndltd.org:canterbury.ac.nz/oai:ir.canterbury.ac.nz:10092/1895
Date January 2007
CreatorsHarland, Chad S.
PublisherUniversity of Canterbury. Biological Sciences
Source SetsUniversity of Canterbury
LanguageEnglish
Detected LanguageEnglish
TypeElectronic thesis or dissertation, Text
RightsCopyright Chad S. Harland, http://library.canterbury.ac.nz/thesis/etheses_copyright.shtml
RelationNZCU

Page generated in 0.0014 seconds