Generative Modeling and Inference in Directed and Undirected Neural Networks

Generative modeling and inference are two broad categories in unsupervised learning whose goal is to answer the following questions, respectively: 1. Given a dataset, how do we (either implicitly or explicitly) model the underlying probability distribution from which the data came and draw samples from that distribution? 2. How can we learn an underlying abstract representation of the data? In this dissertation we provide three studies that each in a different way improve upon specific generative modeling and inference techniques. First, we develop a state-of-the-art estimator of a generic probability distribution's partition function, or normalizing constant, during simulated tempering. We then apply our estimator to the specific case of training undirected probabilistic graphical models and find our method able to track log-likelihoods during training at essentially no extra computational cost. We then shift our focus to variational inference in directed probabilistic graphical models (Bayesian networks) for generative modeling and inference. First, we generalize the aggregate prior distribution to decouple the variational and generative models to provide the model with greater flexibility and find improvements in the model's log-likelihood of test data as well as a better latent representation. Finally, we study the variational loss function and argue under a typical architecture the data-dependent term of the gradient decays to zero as the latent space dimensionality increases. We use this result to propose a simple modification to random weight initialization and show in certain models the modification gives rise to substantial improvement in training convergence time. Together, these results improve quantitative performance of popular generative modeling and inference models in addition to furthering our understanding of them.

Identiferoai:union.ndltd.org:columbia.edu/oai:academiccommons.columbia.edu:10.7916/d8-jvk0-rt13
Date January 2020
CreatorsStinson, Patrick
Source SetsColumbia University
LanguageEnglish
Detected LanguageEnglish
TypeTheses

Page generated in 0.01 seconds