Return to search

Theoretical modeling and experimental studies of solition generation and propagation.

by Cheong Lik-ming. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1995. / Includes bibliographical references. / Abstract / Acknowledgments / Chapter Chapter I --- Introduction --- p.1 / Chapter 1.1 --- Definitions of Optical Solitons --- p.1 / Chapter 1.2 --- A Brief History of Optical Solitons --- p.2 / Chapter 1.3 --- Generation of Optical Solitons --- p.4 / Chapter 1.4 --- About the Thesis --- p.6 / References --- p.8 / Chapter Chapter II --- General Theory of Optical Solitons --- p.10 / Chapter 2.1 --- Propagation Equation of Optical Solitons --- p.10 / Chapter 2.2 --- Solving of the NLSE --- p.16 / Chapter 2.2.1 --- Inverse Scattering Transform --- p.17 / Chapter 2.2.2 --- Split-Step Fourier Method --- p.20 / Chapter 2.3 --- Fundamental Solitons --- p.22 / Chapter 2.4 --- Higher Order Solitons --- p.25 / References --- p.27 / Chapter Chapter III --- Modeling of Soliton Generation Systems Part I: Gain Switching and Spectral Windowing --- p.29 / Chapter 3.1 --- General Descriptions --- p.29 / Chapter 3.2 --- About the Gain Switching and Spectral Windowing Method --- p.30 / Chapter 3.3 --- Gain Switching of Semiconductor Laser Diodes --- p.30 / Chapter 3.3.1 --- Rate Equations of Semiconductor Laser Diodes --- p.31 / Chapter 3.3.2 --- Analysis of Gain Switching Pulses --- p.35 / Chapter 3.3.3 --- Propagation of Gain Switching Pulses in Optical Fibers --- p.42 / Chapter 3.4 --- Spectral Windowing --- p.47 / Chapter 3.5 --- Erbium-Doped Fiber Amplifier --- p.50 / Chapter 3.5.1 --- Theoretical Model of Erbium-Doped Fiber Amplifier --- p.51 / Chapter 3.5.2 --- Pulse Evolutions in Erbium-Doped Fiber Amplifier --- p.54 / Chapter 3.5.3 --- Analysis of Amplification for Gain Switching Pulses --- p.55 / Chapter 3.6 --- Optimal Condition for the Gain Switching and Spectral Windowing Method --- p.60 / References --- p.61 / Chapter Chapter IV --- Modeling of Soliton Generation Systems Part II: Fiber Ring Laser --- p.64 / Chapter 4.1 --- General Descriptions --- p.64 / Chapter 4.2 --- About the Fiber Ring Laser Method --- p.65 / Chapter 4.3 --- Principles of the Fiber Ring Laser --- p.66 / Chapter 4.4 --- Mathematical Model of the Fiber Ring Laser --- p.67 / Chapter 4.4.1 --- Cross Phase Modulation --- p.68 / Chapter 4.4.2 --- Evolution Equations in Ordinary Optical Fibers --- p.70 / Chapter 4.4.3 --- Evolution Equations in Erbium-Doped Fibers --- p.71 / Chapter 4.4.4 --- Description of Polarization Controllers --- p.72 / Chapter 4.5 --- Analysis of Optical Pulses Generated from Fiber Ring Lasers --- p.74 / Chapter 4.5.1 --- Properties of the Mode Locking Process --- p.74 / Chapter 4.5.2 --- Pulse Width Analysis --- p.79 / Chapter 4.5.3 --- Constant Pulse Width Analysis --- p.88 / Chapter 4.5.4 --- Self-Starting Process --- p.91 / Chapter 4.6 --- Stimulated Raman Scattering in Fiber Ring Lasers --- p.94 / Chapter 4.6.1 --- Mathematical Descriptions of Stimulated Raman Scattering --- p.95 / Chapter 4.6.2 --- Effects of Stimulated Raman Scattering on Fiber Ring Lasers --- p.98 / Chapter 4.7 --- Comparison of the Two Methods --- p.100 / References --- p.102 / Chapter Chapter V --- Experimental Investigation of Fiber Ring Lasers --- p.105 / Chapter 5.1 --- Experimental Setup --- p.105 / Chapter 5.2 --- Experimental Results --- p.106 / Chapter 5.3 --- Discussions --- p.117 / References --- p.122 / Chapter Chapter VI --- Conclusion --- p.123 / Chapter Chapter VII --- Future Extensions --- p.127 / Appendix I Solving the NLSE by the Inverse Scattering Transform --- p.A1 / Appendix II Solving the NLSE by the Split-Step Fourier Method --- p.A9 / Appendix III Parameter Listing --- p.A12

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_320542
Date January 1995
ContributorsCheong, Lik-ming., Chinese University of Hong Kong Graduate School. Division of Electronic Engineering.
PublisherChinese University of Hong Kong
Source SetsThe Chinese University of Hong Kong
LanguageEnglish
Detected LanguageEnglish
TypeText, bibliography
Formatprint, [6], 130, [13] leaves : ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0026 seconds