Return to search

Software-assisted data prefetching algorithms.

by Chi-sum, Ho. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1995. / Includes bibliographical references (leaves 110-113). / Abstract --- p.i / Acknowledgement --- p.iii / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Overview --- p.1 / Chapter 1.2 --- Cache Memories --- p.1 / Chapter 1.3 --- Improving Cache Performance --- p.3 / Chapter 1.4 --- Improving System Performance --- p.4 / Chapter 1.5 --- Organization of the dissertation --- p.6 / Chapter 2 --- Related Work --- p.8 / Chapter 2.1 --- Cache Performance --- p.8 / Chapter 2.2 --- Non-Blocking Cache --- p.9 / Chapter 2.3 --- Cache Prefetching --- p.10 / Chapter 2.3.1 --- Hardware Prefetching --- p.10 / Chapter 2.3.2 --- Software-assisted Prefetching --- p.13 / Chapter 2.3.3 --- Improving Cache Effectiveness --- p.22 / Chapter 2.4 --- Other Techniques to Reduce and Hide Memory Latencies --- p.25 / Chapter 2.4.1 --- Register Preloading --- p.25 / Chapter 2.4.2 --- Write Policies --- p.26 / Chapter 2.4.3 --- Small Specialized Cache --- p.26 / Chapter 2.4.4 --- Program Transformation --- p.27 / Chapter 3 --- Stride CAM Prefetching --- p.30 / Chapter 3.1 --- Introduction --- p.30 / Chapter 3.2 --- Architectural Model --- p.32 / Chapter 3.2.1 --- Compiler Support --- p.33 / Chapter 3.2.2 --- Hardware Support --- p.35 / Chapter 3.2.3 --- Model Details --- p.39 / Chapter 3.3 --- Optimization Issues --- p.39 / Chapter 3.3.1 --- Eliminating Reductant Prefetching --- p.40 / Chapter 3.3.2 --- Code Motion --- p.40 / Chapter 3.3.3 --- Burst Mode --- p.44 / Chapter 3.3.4 --- Stride CAM Overflow --- p.45 / Chapter 3.3.5 --- Effects of Loop Optimizations --- p.46 / Chapter 3.4 --- Practicability --- p.50 / Chapter 3.4.1 --- Evaluation Methodology --- p.51 / Chapter 3.4.2 --- Prefetch Accuracy --- p.54 / Chapter 3.4.3 --- Stride CAM Size --- p.56 / Chapter 3.4.4 --- Software Overhead --- p.60 / Chapter 4 --- Stride Register Prefetching --- p.67 / Chapter 4.1 --- Motivation --- p.67 / Chapter 4.2 --- Architectural Model --- p.67 / Chapter 4.2.1 --- Stride Register --- p.69 / Chapter 4.2.2 --- Compiler Support --- p.70 / Chapter 4.2.3 --- Prefetch Bits --- p.72 / Chapter 4.2.4 --- Operation Details --- p.77 / Chapter 4.3 --- Practicability and Optimizations --- p.78 / Chapter 4.3.1 --- Practicability on NASA7 Benchmark Programs --- p.78 / Chapter 4.3.2 --- Optimization Issues --- p.81 / Chapter 4.4 --- Comparison Between Stride CAM and Stride Register Models --- p.84 / Chapter 5 --- Small Software-Driven Array Cache --- p.87 / Chapter 5.1 --- Introduction --- p.87 / Chapter 5.2 --- Cache Pollution in MXM --- p.88 / Chapter 5.3 --- Architectural Model --- p.89 / Chapter 5.3.1 --- Operation Details --- p.91 / Chapter 5.4 --- Effectiveness of Array Cache --- p.92 / Chapter 6 --- Conclusion --- p.96 / Chapter 6.1 --- Conclusion --- p.96 / Chapter 6.2 --- Future Research: An Extension of the Stride CAM Model --- p.97 / Chapter 6.2.1 --- Background --- p.97 / Chapter 6.2.2 --- Reference Address Series --- p.98 / Chapter 6.2.3 --- Extending the Stride CAM Model --- p.100 / Chapter 6.2.4 --- Prefetch Overhead --- p.109 / Bibliography --- p.110 / Appendix --- p.114 / Chapter A --- Simulation Results - Stride CAM Model --- p.114 / Chapter A.l --- Execution Time --- p.114 / Chapter A.1.1 --- BTRIX --- p.114 / Chapter A.1.2 --- CFFT2D --- p.115 / Chapter A.1.3 --- CHOLSKY --- p.116 / Chapter A.1.4 --- EMIT --- p.117 / Chapter A.1.5 --- GMTRY --- p.118 / Chapter A.1.6 --- MXM --- p.119 / Chapter A.1.7 --- VPENTA --- p.120 / Chapter A.2 --- Memory Delay --- p.122 / Chapter A.2.1 --- BTRIX --- p.122 / Chapter A.2.2 --- CFFT2D --- p.123 / Chapter A.2.3 --- CHOLSKY --- p.124 / Chapter A.2.4 --- EMIT --- p.125 / Chapter A.2.5 --- GMTRY --- p.126 / Chapter A.2.6 --- MXM --- p.127 / Chapter A.2.7 --- VPENTA --- p.128 / Chapter A.3 --- Overhead --- p.129 / Chapter A.3.1 --- BTRIX --- p.129 / Chapter A.3.2 --- CFFT2D --- p.130 / Chapter A.3.3 --- CHOLSKY --- p.131 / Chapter A.3.4 --- EMIT --- p.132 / Chapter A.3.5 --- GMTRY --- p.133 / Chapter A.3.6 --- MXM --- p.134 / Chapter A.3.7 --- VPENTA --- p.135 / Chapter A.4 --- Hit Ratio --- p.136 / Chapter A.4.1 --- BTRIX --- p.136 / Chapter A.4.2 --- CFFT2D --- p.137 / Chapter A.4.3 --- CHOLSKY --- p.137 / Chapter A.4.4 --- EMIT --- p.138 / Chapter A.4.5 --- GMTRY --- p.139 / Chapter A.4.6 --- MXM --- p.139 / Chapter A.4.7 --- VPENTA --- p.140 / Chapter B --- Simulation Results - Array Cache --- p.141 / Chapter C --- NASA7 Benchmark --- p.145 / Chapter C.1 --- BTRIX --- p.145 / Chapter C.2 --- CFFT2D --- p.161 / Chapter C.2.1 --- cfft2dl --- p.161 / Chapter C.2.2 --- cfft2d2 --- p.169 / Chapter C.3 --- CHOLSKY --- p.179 / Chapter C.4 --- EMIT --- p.192 / Chapter C.5 --- GMTRY --- p.205 / Chapter C.6 --- MXM --- p.217 / Chapter C.7 --- VPENTA --- p.220

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_320686
Date January 1995
ContributorsHo, Chi-sum., Chinese University of Hong Kong Graduate School. Division of Computer Science.
PublisherChinese University of Hong Kong
Source SetsThe Chinese University of Hong Kong
LanguageEnglish
Detected LanguageEnglish
TypeText, bibliography
Formatprint, xii, 226 leaves : ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0071 seconds