Return to search

Active haptic exploration for 3D shape reconstruction.

by Fung Wai Keung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1996. / Includes bibliographical references (leaves 146-151). / Acknowledgements --- p.viii / Abstract --- p.1 / Chapter 1 --- Overview --- p.3 / Chapter 1.1 --- Tactile Sensing in Human and Robot --- p.4 / Chapter 1.1.1 --- Human Hands and Robotic Hands --- p.4 / Chapter 1.1.2 --- Mechanoreceptors in skin and Tactile Sensor Arrays --- p.7 / Chapter 1.2 --- Motivation --- p.12 / Chapter 1.3 --- Objectives --- p.13 / Chapter 1.4 --- Related Work --- p.14 / Chapter 1.4.1 --- Using Vision Alone --- p.15 / Chapter 1.4.2 --- Integration of Vision and Touch --- p.15 / Chapter 1.4.3 --- Using Touch Sensing Alone --- p.17 / Chapter 1.4.3.1 --- Ronald S. Fearing's Work --- p.18 / Chapter 1.4.3.2 --- Peter K. Allen's Work --- p.22 / Chapter 1.5 --- Outline --- p.26 / Chapter 2 --- Geometric Models --- p.27 / Chapter 2.1 --- Introduction --- p.27 / Chapter 2.2 --- Superquadrics --- p.27 / Chapter 2.2.1 --- 2D Superquadrics --- p.27 / Chapter 2.2.2 --- 3D Superquadrics --- p.29 / Chapter 2.3 --- Model Recovery of Superquadric Models --- p.31 / Chapter 2.3.1 --- Problem Formulation --- p.31 / Chapter 2.3.2 --- Least Squares Optimization --- p.33 / Chapter 2.4 --- Free-Form Deformations --- p.34 / Chapter 2.4.1 --- Bernstein Basis --- p.36 / Chapter 2.4.2 --- B-Spline Basis --- p.38 / Chapter 2.5 --- Other Geometric Models --- p.41 / Chapter 2.5.1 --- Generalized Cylinders --- p.41 / Chapter 2.5.2 --- Hyperquadrics --- p.42 / Chapter 2.5.3 --- Polyhedral Models --- p.44 / Chapter 2.5.4 --- Function Representation --- p.45 / Chapter 3 --- Sensing Strategy --- p.54 / Chapter 3.1 --- Introduction --- p.54 / Chapter 3.2 --- Sensing Algorithm --- p.55 / Chapter 3.2.1 --- Assumption of objects --- p.55 / Chapter 3.2.2 --- Haptic Exploration Procedures --- p.56 / Chapter 3.3 --- Contour Tracing --- p.58 / Chapter 3.4 --- Tactile Sensor Data Preprocessing --- p.59 / Chapter 3.4.1 --- Data Transformation and Sensor Calibration --- p.60 / Chapter 3.4.2 --- Noise Filtering --- p.61 / Chapter 3.5 --- Curvature Determination --- p.64 / Chapter 3.6 --- Step Size Determination --- p.73 / Chapter 4 --- 3D Shape Reconstruction --- p.80 / Chapter 4.1 --- Introduction --- p.80 / Chapter 4.2 --- Correspondence Problem --- p.81 / Chapter 4.2.1 --- Affine Invariance Property of B-splines --- p.84 / Chapter 4.2.2 --- Point Inversion Problem --- p.87 / Chapter 4.3 --- Parameter Triple Interpolation --- p.91 / Chapter 4.4 --- 3D Object Shape Reconstruction --- p.94 / Chapter 4.4.1 --- Heuristic Approach --- p.94 / Chapter 4.4.2 --- Closed Contour Recovery --- p.97 / Chapter 4.4.3 --- Control Lattice Recovery --- p.102 / Chapter 5 --- Implementation --- p.105 / Chapter 5.1 --- Introduction --- p.105 / Chapter 5.2 --- Implementation Tool - MATLAB --- p.105 / Chapter 5.2.1 --- Optimization Toolbox --- p.107 / Chapter 5.2.2 --- Splines Toolbox --- p.108 / Chapter 5.3 --- Geometric Model Implementation --- p.109 / Chapter 5.3.1 --- FFD Examples --- p.111 / Chapter 5.4 --- Shape Reconstruction Implementation --- p.112 / Chapter 5.5 --- 3D Model Reconstruction Examples --- p.120 / Chapter 5.5.1 --- Example 1 --- p.120 / Chapter 5.5.2 --- Example 2 --- p.121 / Chapter 6 --- Conclusion --- p.128 / Chapter 6.1 --- Future Work --- p.129 / Appendix --- p.133 / Bibliography --- p.146

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_321487
Date January 1996
ContributorsFung, Wai Keung., Chinese University of Hong Kong Graduate School. Division of Systems Engineering and Engineering Management.
PublisherChinese University of Hong Kong
Source SetsThe Chinese University of Hong Kong
LanguageEnglish
Detected LanguageEnglish
TypeText, bibliography
Formatprint, viii, 151 leaves : ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0025 seconds