Constraint optimization techniques for graph matching applicable to 3-D object recognition.

by Chi-Min Pang. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1996. / Includes bibliographical references (leaves 110-[115]). / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Range Images --- p.1 / Chapter 1.2 --- Rigid Body Model --- p.3 / Chapter 1.3 --- Motivation --- p.4 / Chapter 1.4 --- Thesis Outline --- p.6 / Chapter 2 --- Object Recognition by Relaxation Processes --- p.7 / Chapter 2.1 --- An Overview of Probabilistic Relaxation Labelling --- p.8 / Chapter 2.2 --- Formulation of Model-matching Problem Solvable by Probabilistic Relaxation --- p.10 / Chapter 2.2.1 --- Compatibility Coefficient --- p.11 / Chapter 2.2.2 --- Match Score --- p.13 / Chapter 2.2.3 --- Iterative Algorithm --- p.14 / Chapter 2.2.4 --- A Probabilistic Concurrent Matching Scheme --- p.15 / Chapter 2.3 --- Formulation of Model-merging Problem Solvable by Fuzzy Relaxation --- p.17 / Chapter 2.3.1 --- Updating Mechanism --- p.17 / Chapter 2.3.2 --- Iterative Algorithm --- p.19 / Chapter 2.3.3 --- Merging Sub-Rigid Body Models --- p.20 / Chapter 2.4 --- Simulation Results --- p.21 / Chapter 2.4.1 --- Experiments in Model-matching Using Probabilistic Relaxation --- p.22 / Chapter 2.4.2 --- Experiments in Model-matching Using Probabilistic Concur- rent Matching Scheme --- p.26 / Chapter 2.4.3 --- Experiments in Model-merging Using Fuzzy Relaxation --- p.33 / Chapter 2.5 --- Summary --- p.36 / Chapter 3 --- Object Recognition by Hopfield Network --- p.37 / Chapter 3.1 --- An Overview of Hopfield Network --- p.38 / Chapter 3.2 --- Model-matching Problem Solved by Hopfield Network --- p.41 / Chapter 3.2.1 --- Representation of the Solution --- p.41 / Chapter 3.2.2 --- Energy Function --- p.42 / Chapter 3.2.3 --- Equations of Motion --- p.46 / Chapter 3.2.4 --- Interpretation of Solution --- p.49 / Chapter 3.2.5 --- Convergence of the Hopfield Network --- p.50 / Chapter 3.2.6 --- Iterative Algorithm --- p.51 / Chapter 3.3 --- Estimation of Distance Threshold Value --- p.53 / Chapter 3.4 --- Cooperative Concurrent Matching Scheme --- p.55 / Chapter 3.4.1 --- Scheme for Recognizing a Single Object --- p.56 / Chapter 3.4.2 --- Scheme for Recognizing Multiple Objects --- p.60 / Chapter 3.5 --- Simulation Results --- p.60 / Chapter 3.5.1 --- Experiments in the Model-matching Problem Using a Hopfield Network --- p.61 / Chapter 3.5.2 --- Experiments in Model-matching Problem Using Cooperative Concurrent Matching --- p.69 / Chapter 3.5.3 --- Experiments in Model-merging Problem Using Hopfield Network --- p.77 / Chapter 3.6 --- Summary --- p.80 / Chapter 4 --- Genetic Generation of Weighting Parameters for Hopfield Network --- p.83 / Chapter 4.1 --- An Overview of Genetic Algorithms --- p.84 / Chapter 4.2 --- Determination of Weighting Parameters for Hopfield Network --- p.86 / Chapter 4.2.1 --- Chromosomal Representation --- p.87 / Chapter 4.2.2 --- Initial Population --- p.88 / Chapter 4.2.3 --- Evaluation Function --- p.88 / Chapter 4.2.4 --- Genetic Operators --- p.89 / Chapter 4.2.5 --- Control Parameters --- p.91 / Chapter 4.2.6 --- Iterative Algorithm --- p.94 / Chapter 4.3 --- Simulation Results --- p.95 / Chapter 4.3.1 --- Experiments in Model-matching Problem using Hopfield Net- work with Genetic Generated Parameters --- p.95 / Chapter 4.3.2 --- Experiments in Model-merging Problem Using Hopfield Network --- p.101 / Chapter 4.4 --- Summary --- p.104 / Chapter 5 --- Conclusions --- p.106 / Chapter 5.1 --- Conclusions --- p.106 / Chapter 5.2 --- Suggestions for Future Research --- p.109 / Bibliography --- p.110 / Chapter A --- Proof of Convergence of Fuzzy Relaxation Process --- p.116

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_321515
Date January 1996
ContributorsPang, Chi-Min., Chinese University of Hong Kong Graduate School. Division of Electronic Engineering.
PublisherChinese University of Hong Kong
Source SetsThe Chinese University of Hong Kong
LanguageEnglish
Detected LanguageEnglish
TypeText, bibliography
Formatprint, xii, 116, [1] leaves : ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0017 seconds