Hybrid FDMA/CDMA wireless ATM and subband image coding.

by Yeung Chi Kit. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1996. / Includes bibliographical references (leaves 89-91). / Chapter I --- Hybrid FDMA/CDMA Wireless ATM --- p.1 / Chapter 1 --- Introduction --- p.2 / Chapter 1.1 --- Motivation --- p.2 / Chapter 1.2 --- Thesis Organization (PART I) --- p.5 / Chapter 2 --- Fundamentals --- p.6 / Chapter 2.1 --- Spread Spectrum --- p.6 / Chapter 2.1.1 --- Direct Sequence (DS) CDMA --- p.6 / Chapter 2.1.2 --- Frequency Hopping (FH) CDMA --- p.8 / Chapter 2.1.3 --- Time Hopping (TH) CDMA --- p.8 / Chapter 2.1.4 --- MC-CDMA (Multicarrier-CDMA) --- p.9 / Chapter 2.2 --- Asynchronous Transfer Mode (ATM) --- p.10 / Chapter 3 --- System Model --- p.12 / Chapter 4 --- System Capacity --- p.16 / Chapter 4.0.1 --- One Homogeneous User Population --- p.16 / Chapter 4.0.2 --- Two Homogeneous User Populations --- p.18 / Chapter 5 --- Conclusion --- p.24 / Chapter II --- Subband Image Coding --- p.28 / Chapter 6 --- Introduction --- p.29 / Chapter 6.1 --- Motivation --- p.29 / Chapter 6.2 --- Thesis Organization (PART II) --- p.31 / Chapter 7 --- Fundamentals --- p.33 / Chapter 7.1 --- Image Fidelity Criteria --- p.33 / Chapter 7.1.1 --- Numerical (Quantitative) Measures --- p.34 / Chapter 7.1.2 --- Perceptual (Subjective) Measure --- p.34 / Chapter 8 --- Wavelet Transform --- p.36 / Chapter 8.1 --- Wavelet Theory --- p.37 / Chapter 8.2 --- Multiresolution Analysis --- p.39 / Chapter 8.3 --- Quality Criteria for Wavelets --- p.42 / Chapter 8.4 --- Criteria for filters...................´ب --- p.43 / Chapter 8.5 --- Orthogonal Discrete Wavelet Transform --- p.45 / Chapter 8.6 --- Biorthogonal Discrete Wavelet Transform --- p.47 / Chapter 8.7 --- Wavelet Packets Transform --- p.48 / Chapter 8.8 --- Appendix --- p.50 / Chapter 8.8.1 --- QMF & CQF --- p.50 / Chapter 8.8.2 --- Examples of Orthogonal Filters --- p.53 / Chapter 8.8.3 --- Examples of Biorthogonal Filters --- p.53 / Chapter 9 --- Transform Coding and Compression --- p.55 / Chapter 9.1 --- Transformation Techniques --- p.56 / Chapter 9.2 --- Quantization --- p.57 / Chapter 9.2.1 --- Scalar Quantization --- p.57 / Chapter 9.2.2 --- Llyod-Max Quantization --- p.59 / Chapter 9.2.3 --- Vector Quantization --- p.59 / Chapter 9.2.4 --- Successive Approximation Entropy-Coded Quantization --- p.60 / Chapter 9.3 --- Entropy Coding --- p.61 / Chapter 9.3.1 --- Huffman Coding --- p.61 / Chapter 9.3.2 --- Arithmetic Coding --- p.62 / Chapter 9.3.3 --- Dictionary Based Coding --- p.64 / Chapter 9.3.4 --- Run Length Coding --- p.65 / Chapter 9.3.5 --- Example --- p.65 / Chapter 10 --- Embedded Zerotree Algorithm --- p.69 / Chapter 10.1 --- Significance Map Encoding --- p.70 / Chapter 10.2 --- Successive Approximation Entropy Coded Quantization --- p.72 / Chapter 10.3 --- Example --- p.74 / Chapter 10.4 --- Comments on EZW --- p.77 / Chapter 11 --- Residue Coding Using Embedded Zerotree Algorithm --- p.79 / Chapter 11.1 --- Residue Coding --- p.80 / Chapter 11.2 --- Results --- p.81 / Chapter 12 --- Conclusion --- p.86

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_321518
Date January 1996
ContributorsYeung, Chi Kit., Chinese University of Hong Kong Graduate School. Division of Information Engineering.
PublisherChinese University of Hong Kong
Source SetsThe Chinese University of Hong Kong
LanguageEnglish
Detected LanguageEnglish
TypeText, bibliography
Formatprint, xv, 91 leaves : ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0018 seconds