Return to search

Enhancement of chemical degradation of synthetic dyes by biosorption.

by Stephen, Man-yuen Cheng. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1998. / Includes bibliographical references (leaves 124-141). / Abstract also in Chinese. / Acknowledgements --- p.i / Abstract --- p.ii / List of Figures --- p.iv / List of Tables --- p.ix / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- The development of dyes --- p.1 / Chapter 1.2 --- The chemistry of azo dyes --- p.2 / Chapter 1.3 --- "Evaluation of dyes submitted under the ""Toxic Substances Control Act"" new chemicals programme" --- p.6 / Chapter 1.4 --- Environmental concerns of dyes --- p.7 / Chapter 1.5 --- Decolorization techniques --- p.11 / Chapter 1.5.1 --- Activated sludge process --- p.11 / Chapter 1.5.2 --- Chlorination --- p.12 / Chapter 1.5.3 --- Fenton's reaction --- p.13 / Chapter 1.5.4 --- Ozonation --- p.13 / Chapter 1.5.5 --- Adsorption by activated carbon --- p.13 / Chapter 1.5.6 --- Chemical flocculation --- p.14 / Chapter 1.5.7 --- Coagulation --- p.14 / Chapter 1.5.8 --- Advance Oxidation Process --- p.15 / Chapter 1.5.8a --- Photocatalytic activation --- p.17 / Chapter 1.5.8b --- Enhancement of reaction rates of photocatalytic reaction --- p.21 / Chapter 1.5.9 --- Biosorption of azo dyes by Pseudomonas sp. K-l --- p.23 / Chapter 1.6 --- Water pollution in Hong Kong --- p.24 / Chapter 1.7 --- Purpose of study --- p.24 / Chapter 2 --- Objectives --- p.27 / Chapter 3 --- Materials and Methods --- p.28 / Chapter 3.1 --- Materials --- p.28 / Chapter 3.1.1 --- Azo dyes --- p.28 / Chapter 3.1.2 --- Biosorbent --- p.28 / Chapter 3.1.3 --- Chemicals --- p.28 / Chapter 3.2 --- Photocatalytic reactor --- p.31 / Chapter 3.3 --- Determination of the peak absorbance of five azo dyes at different pH --- p.31 / Chapter 3.4 --- Determination of dye concentration by measuring at peak absorbance --- p.37 / Chapter 3.5 --- Determination of pseudo-first-order rate constant --- p.37 / Chapter 3.6 --- Effect of initial concentration of procion red MX-5B on photocatalytic degradation --- p.39 / Chapter 3.7 --- Effect of initial concentration of hydrogen peroxide on photocatalytic degradation of procion red MX-5B --- p.40 / Chapter 3.8 --- Effect of initial pH on the photocatalytic degradation of procion red MX-5B --- p.40 / Chapter 3.9 --- Effect of initial temperature on the photocatalytic degradation of procion red MX-5B --- p.40 / Chapter 3.10 --- Effect of titanium dioxide on the photocatalytic degradation of procion red MX-5B --- p.40 / Chapter 3.11 --- Effect of UV intensity in the photocatalytic degradation of procion red MX-5B --- p.41 / Chapter 3.12 --- Degradation kinetics of different dyes --- p.41 / Chapter 3.13 --- Degradation of 40 mg/L of procion red MX-5B under optimized conditions --- p.41 / Chapter 3.14 --- "Degradation of 1,000 mg/L of procion red MX-5B under optimized conditions" --- p.42 / Chapter 3.15 --- Temporal change of the concentration of procion red MX-5B in calcium alginate beads --- p.42 / Chapter 3.16 --- "Temporal change of the concentration of procion red MX-5B in alginate beads of 5,000 mg/L of Ti02" --- p.43 / Chapter 3.17 --- "Temporal change of the concentration of procion red MX-5B in alginate beads of 10,000 mg/L of Ti02" --- p.43 / Chapter 3.18 --- Effect of the concentration of titanium dioxide in alginate beads in the photocatalytic degradation of procion red MX-5B --- p.45 / Chapter 3.19 --- "Effect of hydrogen peroxide in the photocatalytic degradation of procion red MX-5B in 5,000 mg/L of Ti02-alginate beads" --- p.47 / Chapter 3.20 --- "Temporal change of the concentration of procion red MX-5B in alginate beads with 5,000 mg/L of Ti02" --- p.47 / Chapter 3.21 --- "Effect of biomass of Pseudomonas sp. K1 on the photocatalytic degradation of procion red MX-5B in alginate beads with 5,000 mg/L of Ti02" --- p.48 / Chapter 3.22 --- Diffuse reflectance-IR spectroscopic analysis of degradation product(s) --- p.49 / Chapter 3.23 --- Nuclear magnetic resonance (NMR) spectroscopic analysis of degradation products --- p.49 / Chapter 3.24 --- Toxicological evaluation of degradation products using Microtox® test --- p.51 / Chapter 4 --- Result --- p.54 / Chapter 4.1 --- Biosorption of dyes by Pseudomonas sp. K1 --- p.54 / Chapter 4.2 --- UV intensities of the eight Cole-Parmer UV lamps at 365 nm --- p.54 / Chapter 4.3 --- Determination of the peak absorbance of five azo dyes at different pH using scanning spectrophotometer --- p.54 / Chapter 4.4 --- Determination of dye concentration by measuring at peak absorbance --- p.66 / Chapter 4.5 --- Effect of initial concentration of procion red MX-5Bin photocatalytic degradation rate --- p.66 / Chapter 4.6 --- Effect of initial concentration of hydrogen peroxide on the photocatalytic degradation of procion red MX-5B --- p.73 / Chapter 4.7 --- Effect of initial pH on photocatalytic degradation of procion red MX-5B --- p.73 / Chapter 4.8 --- Effect of initial temperature on photocatalytic degradation of procion red MX-5B --- p.73 / Chapter 4.9 --- Effect of titanium dioxide on photocatalytic degradation of procion red MX-5B --- p.77 / Chapter 4.10 --- Effect of UV intensity on photocatalytic degradation of procion red MX-5B --- p.77 / Chapter 4.11 --- Photocatalytic degradation kinetics of different azo dyes --- p.77 / Chapter 4.12 --- Photocatalytic degradation of 40 mg/L of reactive red241 under optimized conditions --- p.77 / Chapter 4.13 --- Photocatalytic degradation of 40 mg/L procion red MX-5B under optimized conditions --- p.81 / Chapter 4.14 --- "Photocatalytic degradation of 1,000 mg/L of procion red MX-5B under optimized conditions" --- p.81 / Chapter 4.15 --- Temporal change of the concentration of procion red MX-5B in calcium alginate beads --- p.81 / Chapter 4.16 --- "Temporal changes of the concentration of procion red MX-5B in 5,000 mg/L of Ti02-alginate beads" --- p.85 / Chapter 4.17 --- "Temporal change of the concentration of procion red MX-5B in 10,000 mg/L of Ti02-alginate beads" --- p.85 / Chapter 4.18 --- Effect of the concentration of titanium dioxide in alginate beads in the photocatalytic degradation of procion red MX-5B --- p.89 / Chapter 4.19 --- "Effect of hydrogen peroxide in the photocatalytic degradation of procion red MX-5B in 5,000 mg/L of Ti02-alginate beads" --- p.89 / Chapter 4.20 --- "Temporal change of the concentration of procion red MX-5Bin alginate beads with 5,000 mg/L of Ti02" --- p.89 / Chapter 4.21 --- "Effect ofbiomass of Pseudomonas sp. K1 on the photocatalytic degradation of procion red MX-5B in 5,000 mg/L of Ti02-alginate beads" --- p.93 / Chapter 4.22 --- Degradation products analysis using diffuse reflectance-IR spectroscopy --- p.93 / Chapter 4.23 --- Degradation products analysis using nuclear magnetic resonance (NMR) --- p.101 / Chapter 4.24 --- Toxicological evaluation of degradation products using Microtox® test --- p.101 / Chapter 5 --- Discussion --- p.104 / Chapter 5.1 --- Biosorption of azo dyes in Pseudomonas sp. K-l --- p.104 / Chapter 5.2 --- Optimization of photocatalytic degradation of azo dyes --- p.105 / Chapter 5.2.1 --- Effect of initial concentration of procion red MX-5B on the photocatalytic degradation --- p.105 / Chapter 5.2.2 --- Effect of initial concentration of hydrogen peroxide on the photocatalytic degradation --- p.106 / Chapter 5.2.3 --- Effect of initial pH on the photocatalytic degradation --- p.107 / Chapter 5.2.4 --- Effect of initial temperature on the photocatalytic degradation --- p.108 / Chapter 5.2.5 --- Effect of titanium dioxide on the photocatalytic degradation --- p.109 / Chapter 5.2.6 --- Effect of UV intensity on the photocatalytic degradation --- p.110 / Chapter 5.2.7 --- Degradation kinetics of different dyes --- p.111 / Chapter 5.2.8 --- Optimized conditions for PCO of reactive red 241 and procion red --- p.112 / Chapter 5.3 --- Immobilization of titanium dioxide and Pseudomonas sp. K-l in alginate beads --- p.113 / Chapter 5.3.1 --- Temporal changes of the concentration of dye in alginate beads --- p.113 / Chapter 5.3.2 --- Effect of titanium dioxide in alginate beads in PCO --- p.114 / Chapter 5.3.3 --- Effect of hydrogen peroxide in alginate beads in PCO --- p.115 / Chapter 5.3.4 --- "Temporal change of dye concentration in alginate beads of 5,000 mg/L" --- p.115 / Chapter 5.3.5 --- Effect of biomass of Pseudomonas sp. K-l in alginate beads on the PCO of dye --- p.115 / Chapter 5.4 --- Diffuse reflectance IR spectroscopic analysis of degradation products --- p.116 / Chapter 5.5 --- 1HNMR analysis of degradation products --- p.119 / Chapter 5.6 --- Toxicological evaluation of degradation products using Microtox® test --- p.120 / Chapter 5.7 --- Application --- p.121 / Chapter 6 --- Conclusion --- p.122 / Chapter 7 --- References --- p.124 / Appendix 1 --- p.142 / Appendix 2 --- p.143

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_322179
Date January 1998
ContributorsCheng, Stephen Man-yuen., Chinese University of Hong Kong Graduate School. Division of Biology.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, ix, 143 leaves : ill. (some col., some mounted) ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0032 seconds