Return to search

Sulfide and UV/ozone treatments on III-V semiconductors =: 用硫及紫外光/臭氧處理III-V 族半導體. / 用硫及紫外光/臭氧處理III-V 族半導體 / Sulfide and UV/ozone treatments on III-V semiconductors =: Yong liu ji zi wai guang/xiu yang chu li III-V zu ban dao ti. / Yong liu ji zi wai guang/xiu yang chu li III-V zu ban dao ti

by Choy Wing Hong. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1998. / Includes bibliographical references (leaves 95-102). / Text in English; abstract also in Chinese. / by Choy Wing Hong. / ABSTRACT --- p.vi / ACKNOWLEDGEMENTS --- p.x / LIST OF FIGURES --- p.xi / LIST OF TABLES --- p.xiii / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Background --- p.1 / Chapter 1.2 --- Surface passivation techniques --- p.2 / Chapter 1.2.1 --- Sulfide solution passivation --- p.2 / Chapter 1.2.2 --- Gas-phase sulfide passivation --- p.3 / Chapter 1.2.3 --- Ultra-violet and ozone exposure --- p.4 / Chapter 1.3 --- Surface structure of sulfide-passivated surface --- p.5 / Chapter 1.4 --- Surface structure of ultra-violet/ozone oxidation --- p.8 / Chapter 1.5 --- Objectives of present study --- p.10 / Chapter Chapter 2 --- Instrumentation --- p.12 / Chapter 2.1 --- Introduction --- p.12 / Chapter 2.2 --- Atomic force microscopy (AFM) --- p.12 / Chapter 2.2.1 --- The development of AFM --- p.12 / Chapter 2.2.2 --- Basic principles of AFM --- p.12 / Chapter 2.2.3 --- Forces and their relevance to atomic force microscopy --- p.13 / Chapter 2.2.3.1 --- Van Der Waals forces --- p.15 / Chapter 2.2.3.2 --- Repulsive forces --- p.15 / Chapter 2.2.3.3 --- Capillary forces --- p.15 / Chapter 2.2.4 --- Displacement sensor of AFM --- p.15 / Chapter 2.2.4.1 --- Electron tunneling --- p.16 / Chapter 2.2.4.2 --- Optical interference --- p.16 / Chapter 2.2.4.3 --- Laser beam deflection --- p.16 / Chapter 2.2.5 --- Instrument specification --- p.17 / Chapter 2.2.5.1 --- Contact mode AFM --- p.17 / Chapter 2.3 --- X-ray photoelectron spectroscopy --- p.19 / Chapter 2.3.1 --- The development of XPS --- p.19 / Chapter 2.3.2 --- Basic principles of XPS --- p.19 / Chapter 2.3.3 --- XPS experiments --- p.23 / Chapter 2.3.4 --- Quantitative analysis --- p.26 / Chapter 2.3.4.1 --- Atomic concentration of a homogenous materials --- p.26 / Chapter 2.3.4.2 --- Layer structure --- p.27 / Chapter 2.4 --- Rutherford backscattering spectrometry (RBS) --- p.29 / Chapter 2.4.1 --- Basic principles --- p.29 / Chapter 2.4.2 --- Kinematics --- p.29 / Chapter 2.4.3 --- Channeling --- p.31 / Chapter Chapter 3 --- Surface treatments --- p.32 / Chapter 3.1 --- Semiconductor wafer --- p.32 / Chapter 3.2 --- Cleaning procedures --- p.32 / Chapter 3.3 --- Polysulfide passivation --- p.34 / Chapter 3.4 --- UV/Ozone oxidation --- p.39 / Chapter Chapter 4 --- Surface roughness and oxide contents of sulfide passivation --- p.41 / Chapter 4.1 --- Introduction --- p.41 / Chapter 4.2 --- Experimental methodology --- p.42 / Chapter 4.3 --- Etching --- p.44 / Chapter 4.3.1 --- Etching effect of polysulfide solution --- p.45 / Chapter 4.3.2 --- Possible consequences of the etching effect --- p.45 / Chapter 4.4 --- Oxide contents --- p.47 / Chapter 4.4.1 --- Oxide gained during polysulfide solution treatment --- p.47 / Chapter 4.4.2 --- Oxide gained after polysulfide passivation --- p.47 / Chapter 4.5 --- Surface roughness --- p.49 / Chapter 4.5.1 --- Surface roughness after different passivation methods --- p.49 / Chapter 4.5.2 --- The sticking probability after different passivations --- p.51 / Chapter 4.6 --- The spiral ladder of solution-phase passivation --- p.55 / Chapter 4.7 --- Conclusions --- p.58 / Chapter Chapter 5 --- Sulfide on Ge/GaAs heterojunction --- p.59 / Chapter 5.1 --- Introduction --- p.59 / Chapter 5.1.1 --- Band structure of Ge/GaAs heteroj unction --- p.59 / Chapter 5.1.2 --- Lattice match of Ge/GaAs heteroj unction --- p.60 / Chapter 5.1.3 --- The growth of Ge on GaAs using molecular beam epitaxy --- p.62 / Chapter 5.2 --- The growth of Ge on GaAs using thermal pulse annealing --- p.63 / Chapter 5.3 --- Sulfide as an atomic interdiffusion barrier --- p.65 / Chapter 5.3.1 --- Experimental methodology --- p.65 / Chapter 5.3.2 --- Crystallinity of Ge --- p.67 / Chapter 5.3.3 --- Results and discussions --- p.67 / Chapter 5.3.3.1 --- RBS and XPS results --- p.67 / Chapter 5.3.3.2 --- AFM and I-V results --- p.71 / Chapter 5.4 --- Conclusions --- p.71 / Chapter Chapter 6 --- UV/03 on Ge/GaAs heterojunction --- p.72 / Chapter 6.1 --- Introduction of UV/o3 oxidation --- p.72 / Chapter 6.2 --- UV/o3 oxidation on GaAs --- p.74 / Chapter 6.3 --- Ge on UV/o3 treated GaAs --- p.76 / Chapter 6.3.1 --- Experimental methodology --- p.76 / Chapter 6.3.2 --- Crystallinity of Ge --- p.77 / Chapter 6.3.3 --- AFM results --- p.77 / Chapter 6.3.4 --- RBS results --- p.80 / Chapter 6.4 --- Diodes --- p.82 / Chapter 6.4.1 --- Fabrication of diode --- p.82 / Chapter 6.4.2 --- Diode characteristics --- p.84 / Chapter 6.4.3 --- I-V characteristics --- p.90 / Chapter 6.5 --- Conclusions --- p.90 / Chapter Chapter 7 --- Conclusion and future work --- p.93 / Chapter 7.1 --- Conclusions --- p.93 / Chapter 7.2 --- Future works --- p.94 / Reference --- p.95

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_322213
Date January 1998
ContributorsChoy, Wing Hong., Chinese University of Hong Kong Graduate School. Division of Chemistry.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, xiii, 102 leaves : ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0025 seconds