Return to search

Fast interactive 2D and 3D segmentation tools.

by Kevin Chun-Ho Wong. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1998. / Includes bibliographical references (leaves 74-79). / Abstract also in Chinese. / Chinese Abstract --- p.v / Abstract --- p.vi / Acknowledgements --- p.vii / Chapter 1 --- Introduction --- p.1 / Chapter 2 --- Prior Work : Image Segmentation Techniques --- p.3 / Chapter 2.1 --- Introduction to Image Segmentation --- p.4 / Chapter 2.2 --- Region Based Segmentation --- p.5 / Chapter 2.2.1 --- Boundary Based vs Region Based --- p.5 / Chapter 2.2.2 --- Region growing --- p.5 / Chapter 2.2.3 --- Integrating Region Based and Edge Detection --- p.6 / Chapter 2.2.4 --- Watershed Based Methods --- p.8 / Chapter 2.3 --- Fuzzy Set Theory in Segmentation --- p.8 / Chapter 2.3.1 --- Fuzzy Geometry Concept --- p.8 / Chapter 2.3.2 --- Fuzzy C-Means (FCM) Clustering --- p.9 / Chapter 2.4 --- Canny edge filter with contour following --- p.11 / Chapter 2.5 --- Pyramid based Fast Curve Extraction --- p.12 / Chapter 2.6 --- Curve Extraction with Multi-Resolution Fourier transformation --- p.13 / Chapter 2.7 --- User interfaces for Image Segmentation --- p.13 / Chapter 2.7.1 --- Intelligent Scissors --- p.14 / Chapter 2.7.2 --- Magic Wands --- p.16 / Chapter 3 --- Prior Work : Active Contours Model (Snakes) --- p.17 / Chapter 3.1 --- Introduction to Active Contour Model --- p.18 / Chapter 3.2 --- Variants and Extensions of Snakes --- p.19 / Chapter 3.2.1 --- Balloons --- p.20 / Chapter 3.2.2 --- Robust Dual Active Contour --- p.21 / Chapter 3.2.3 --- Gradient Vector Flow Snakes --- p.22 / Chapter 3.2.4 --- Energy Minimization using Dynamic Programming with pres- ence of hard constraints --- p.23 / Chapter 3.3 --- Conclusions --- p.25 / Chapter 4 --- Slimmed Graph --- p.26 / Chapter 4.1 --- BSP-based image analysis --- p.27 / Chapter 4.2 --- Split Line Selection --- p.29 / Chapter 4.3 --- Split Line Selection with Summed Area Table --- p.29 / Chapter 4.4 --- Neighbor blocks --- p.31 / Chapter 4.5 --- Slimmed Graph Generation --- p.32 / Chapter 4.6 --- Time Complexity --- p.35 / Chapter 4.7 --- Results and Conclusions --- p.36 / Chapter 5 --- Fast Intelligent Scissor --- p.38 / Chapter 5.1 --- Background --- p.39 / Chapter 5.2 --- Motivation of Fast Intelligent Scissors --- p.39 / Chapter 5.3 --- Main idea of Fast Intelligent Scissors --- p.40 / Chapter 5.3.1 --- Node position and Cost function --- p.41 / Chapter 5.4 --- Implementation and Results --- p.42 / Chapter 5.5 --- Conclusions --- p.43 / Chapter 6 --- 3D Contour Detection: Volume Cutting --- p.50 / Chapter 6.1 --- Interactive Volume Cutting with the intelligent scissors --- p.51 / Chapter 6.2 --- Contour Selection --- p.52 / Chapter 6.2.1 --- 3D Intelligent Scissors --- p.53 / Chapter 6.2.2 --- Dijkstra's algorithm --- p.54 / Chapter 6.3 --- 3D Volume Cutting --- p.54 / Chapter 6.3.1 --- Cost function for the cutting surface --- p.55 / Chapter 6.3.2 --- "Continuity function (x,y, z) " --- p.59 / Chapter 6.3.3 --- Finding the cutting surface --- p.61 / Chapter 6.3.4 --- Topological problems for the volume cutting --- p.61 / Chapter 6.3.5 --- Assumptions for the well-conditional contour used in our algo- rithm --- p.62 / Chapter 6.4 --- Implementation and Results --- p.64 / Chapter 6.5 --- Conclusions --- p.64 / Chapter 7 --- Conclusions --- p.71 / Chapter 7.1 --- Contributions --- p.71 / Chapter 7.2 --- Future Work --- p.72 / Chapter 7.2.1 --- Real-time interactive tools with Slimmed Graph --- p.72 / Chapter 7.2.2 --- 3D slimmed graph --- p.72 / Chapter 7.2.3 --- Cartoon Film Generation System --- p.72

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_322273
Date January 1998
ContributorsWong, Kevin Chun-Ho., Chinese University of Hong Kong Graduate School. Division of Computer Science.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, xi, 79 leaves : ill. (some col.) ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.002 seconds