Return to search

Thickness and vacuum annealing effects in single-crystal La₀.₆₇Ca₀.₃₃MnO3 thin films. / 厚度和眞空熱處理對單晶 La0.67Ca0.33 薄膜特性之影響 / Thickness and vacuum annealing effects in single-crystal La0.67₆₇Ca₀.₃₃MnO₃ thin films. / Hou du he zhen kong re chu li dui dan jing La0.67Ca0.33 bo mo te xing zhi ying xiang

Yeung Chun Fai = 厚度和眞空熱處理對單晶 La0.67Ca0.33MnO3 薄膜特性之影響 / 楊進輝. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2000. / Includes bibliographical references. / Text in English; abstracts in English and Chinese. / by Yeung Chun Fai = Hou du he zhen kong re chu li dui dan jing La0.67Ca0.33MnO3 bo mo te xing zhi ying xiang / Yang Jinhui. / Acknowledgements --- p.i / Abstract --- p.ii / 論文摘要 --- p.iv / Table of contents --- p.v / List of Figures --- p.viii / List of Tables --- p.xiii / Chapter Chapter I --- Introduction / Chapter 1.1 --- Development of magnetoresistance materials --- p.1-1 / Chapter 1.1.1 --- Magnetoresistance (MR) --- p.1-1 / Chapter 1.1.2 --- Anisotropy magnetoresistance (AMR) --- p.1-1 / Chapter 1.1.3 --- Giant magnetoresistance (GMR) --- p.1-2 / Chapter 1.1.4 --- Colossal magnetoresistance (CMR) in rare-earth manganites --- p.1-3 / Chapter 1.1.5 --- Possible origin of CMR in rare-earth manganites --- p.1-4 / Chapter 1.1.5.1 --- Double exchange mechanism --- p.1-4 / Chapter 1.1.5.2 --- Jahn-teller effect --- p.1-6 / Chapter 1.1.5.3 --- Other mechanisms --- p.1-7 / Chapter 1.1.6 --- Possible origins of CMR in Thallium manganite pyrochlores (TI2Mn207) --- p.1-7 / Chapter 1.2 --- New developments in manganite materials --- p.1-8 / Chapter 1.3 --- Our approach --- p.1-8 / Chapter 1.3.1 --- Why choose La0 .67Ca0.33Mn03 material? --- p.1-8 / Chapter 1.3.2 --- The role of oxygen content in manganite materials --- p.1-9 / Chapter 1.4 --- The scope of this thesis work --- p.1-11 / References --- p.1-12 / Chapter Chapter II --- Instrumentation / Chapter 2.1 --- Thin film deposition --- p.2-1 / Chapter 2.1.1 --- Introduction --- p.2-1 / Chapter 2.1.2 --- Facing-target sputtering (FTS) --- p.2-3 / Chapter 2.1.3 --- Deposition profile calculation for sputtering with FTS --- p.2-4 / Chapter 2.1.4 --- Vacuum system --- p.2-7 / Chapter 2.2 --- Characterization --- p.2-8 / Chapter 2.2.1 --- Profilometer --- p.2-8 / Chapter 2.2.2 --- Atomic force microscopy (AFM) --- p.2-8 / Chapter 2.2.3 --- X-ray diffraction (XRD) --- p.2-8 / Chapter 2.2.4 --- Resistance and magnetoresistance measurement --- p.2-10 / Chapter 2.2.5 --- Hall effect measurement --- p.2-11 / References --- p.2-13 / Chapter Chapter III --- Epitaxial growth of La0.67Ca0.33 Mn03 thin films / Chapter 3.1 --- Introduction --- p.3-1 / Chapter 3.2 --- Fabrication and characteristics of LCMO target --- p.3-1 / Chapter 3.3 --- Substrate materials --- p.3-5 / Chapter 3.4 --- Deposition --- p.3-10 / Chapter 3.4.1 --- Sample preparation --- p.3-10 / Chapter 3.4.2 --- Substrate temperature --- p.3-10 / Chapter 3.4.3 --- Deposition process --- p.3-17 / Chapter 3.5 --- Post-annealing effect --- p.3-18 / Chapter 3.6 --- Film composition analysis --- p.3-22 / Chapter 3.7 --- Epitaxial growth examination --- p.3-22 / References --- p.3-27 / Chapter Chapter IV --- Thickness effect in single-crystal LCMO thin films grown on NGO and STO / Chapter 4.1 --- Motivation --- p.4-1 / Chapter 4.2 --- Resistance measurement --- p.4-2 / Chapter 4.3 --- Magnetoresistance (MR) --- p.4-8 / Chapter 4.4 --- Crystal structure --- p.4-12 / Chapter 4.5 --- Surface morphology --- p.4-16 / Chapter 4.6 --- Hall effect measurement --- p.4-19 / Chapter 4.6.1 --- Basic principle --- p.4-19 / Chapter 4.6.2 --- Experiment --- p.4-20 / Chapter 4.6.3 --- Carrier concentration & mobility --- p.4-20 / Chapter 4.7 --- Discussions --- p.4-25 / References --- p.4-27 / Chapter Chapter V --- Strain dependent vacuum annealing effectin single-crystal La0.67Ga0.33MnO3 thin films / Chapter 5.1 --- Motivation --- p.5-1 / Chapter 5.2 --- Sample description --- p.5-1 / Chapter 5.3 --- Vacuum annealing process --- p.5-2 / Chapter 5.4 --- Crystal structure --- p.5-2 / Chapter 5.5 --- Resistance measurement --- p.5-6 / Chapter 5.6 --- Discussions --- p.5-8 / Chapter 5.6.1 --- Lattice expansion --- p.5-8 / Chapter 5.6.2 --- Determination of oxygen content --- p.5-9 / References --- p.5-11 / Chapter Chapter VI --- Activation energy of small polaron in La0.67Ca0.33MnO3 thin films / Chapter 6.1 --- Motivation --- p.6-1 / Chapter 6.2 --- Basic theory --- p.6-1 / Chapter 6.2.1 --- Variable range hopping --- p.6-1 / Chapter 6.2.2 --- Semiconduction --- p.6-2 / Chapter 6.2.3 --- Nearest-neighbor hoping of small polarons --- p.6-2 / Chapter 6.3 --- Sample description --- p.6-3 / Chapter 6.4 --- Resistance measurement --- p.6-4 / Chapter 6.5 --- Activation energy --- p.6-4 / Chapter 6.6 --- Discussions --- p.6-5 / References --- p.6-12 / Chapter Chapter VII --- Conclusions --- p.7-1

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_323178
Date January 2000
ContributorsYeung, Chun Fai., Chinese University of Hong Kong Graduate School. Division of Physics.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, 1 v. (various paging) : ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0027 seconds