Return to search

Geometric phase in quantum mechanics =: 量子力學之幾何相位. / 量子力學之幾何相位 / Geometric phase in quantum mechanics =: Liang zi li xue zhi ji he xiang wei. / Liang zi li xue zhi ji he xiang wei

Fung Ho Tak. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (leaves 107-110). / Text in English; abstracts in English and Chinese. / Fung Ho Tak. / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Introduction to Geometric phase --- p.1 / Chapter 1.2 --- Introduction to Bose Einstein Condensation --- p.3 / Chapter 1.3 --- Motivation --- p.4 / Chapter 2 --- Review on Geometric phase --- p.6 / Chapter 2.1 --- Geometric phase achieved by undergoing adiabatic cyclic evolution --- p.7 / Chapter 2.2 --- Geometric phase acquired by undergoing cyclic evolution --- p.10 / Chapter 2.3 --- Geometric phase acquired by undergoing any evolution --- p.13 / Chapter 2.4 --- Geometrical representation of a two-level system --- p.15 / Chapter 3 --- Geometric Phase in Physical Systems --- p.17 / Chapter 3.1 --- Aharonov-Bohm Effect --- p.18 / Chapter 3.2 --- An Electron in a Magnetic Field --- p.20 / Chapter 3.2.1 --- The geometric phase β0(t) --- p.23 / Chapter 3.2.2 --- The geometric phase β1(t) --- p.28 / Chapter 3.3 --- Geometrical picture of the two-level quantum system --- p.32 / Chapter 3.3.1 --- Geometrical interpretation of β0(t) --- p.33 / Chapter 3.3.2 --- Geometrical interpretation of β1(t) --- p.36 / Chapter 3.4 --- Summary --- p.37 / Chapter 4 --- Geometric phase of a particle in a vibrating cavity --- p.39 / Chapter 4.1 --- Energy of a particle in a vibrating spherical cavity --- p.40 / Chapter 4.2 --- Geometric phase of a particle in a vibrating spherical cavity --- p.43 / Chapter 4.2.1 --- β0(t) of a particle in a vibrating cavity --- p.44 / Chapter 4.2.2 --- β1(t) of a particle in a vibrating cavity --- p.46 / Chapter 4.3 --- The Rotating-Wave Approximation approach --- p.46 / Chapter 4.3.1 --- Energy of the particle by using RWA --- p.49 / Chapter 4.3.2 --- Geometric phase of the particle by RWA --- p.50 / Chapter 4.4 --- The SU(2) Method --- p.52 / Chapter 4.5 --- Summary --- p.53 / Chapter 5 --- Review on Bose Einstein Condensation --- p.55 / Chapter 6 --- Energies and wavefunctions of a condensate --- p.63 / Chapter 6.1 --- perturbation approach to solve the nonlinear Schrodinger equation --- p.63 / Chapter 6.2 --- Energy of a BEC in an oscillating harmonic trap --- p.66 / Chapter 6.3 --- Wavefunction of the condensate in a vibrating harmonic trap --- p.72 / Chapter 6.4 --- Energies and wavefunctions of SHO --- p.76 / Chapter 6.5 --- Summary --- p.78 / Chapter 7 --- "(δr)2,(δpr)2 and geometric phase of a condensate" --- p.79 / Chapter 7.1 --- Uncertainties in position and momentum --- p.80 / Chapter 7.1.1 --- (δr)2 and (δpr)2 for a BEC in an oscillating trap --- p.80 / Chapter 7.1.2 --- (δr) and (δpr) in a oscillating SHO --- p.85 / Chapter 7.2 --- Geometric phase of BEC --- p.85 / Chapter 7.2.1 --- β0(t) of BEC --- p.87 / Chapter 7.2.2 --- β1(t)of BEC --- p.90 / Chapter 7.3 --- Summary --- p.92 / Chapter 8 --- Summary --- p.95 / Chapter A --- Parameter space and Berry's phase for degenerate Hamilto- nian --- p.99 / Chapter B --- Dirac Phase Factor --- p.101 / Chapter C --- Hamiltonian of a frequency-varying harmonics oscillator --- p.104 / Bibliography --- p.107

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_323834
Date January 2002
ContributorsFung, Ho Tak., Chinese University of Hong Kong Graduate School. Division of Physics.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, xi, 110 leaves : ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0044 seconds