Return to search

Enhancement of biodegradation of atrazine by photocatalytic oxidation =: 利用光催化氧化作用加强阿特拉津的生物降解. / 利用光催化氧化作用加强阿特拉津的生物降解 / Enhancement of biodegradation of atrazine by photocatalytic oxidation =: Li yong guang cui hua yang hua zuo yong jia qiang e te la jin de sheng wu xiang jie. / Li yong guang cui hua yang hua zuo yong jia qiang e te la jin de sheng wu xiang jie

by Chan Cho-Yin. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (leaves 161-173). / Text in English; abstracts in English and Chinese. / by Chan Cho-Yin. / Acknowledgements --- p.i / Abstracts --- p.ii / Table of Contents --- p.vi / List of Figures --- p.xii / List of Plates --- p.xv / List of Tables --- p.xvi / Abbreviations --- p.xix / Equations --- p.1 / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Atrazine --- p.1 / Chapter 1.1.1 --- Characteristics of atrazine --- p.1 / Chapter 1.1.2 --- Use of atrazine --- p.7 / Chapter 1.1.3 --- Inhibitory mechanisms --- p.7 / Chapter 1.1.4 --- Global annual consumption --- p.7 / Chapter 1.1.5 --- Environmental fate --- p.8 / Chapter 1.1.5.1 --- Major intermediates --- p.10 / Chapter 1.1.6 --- Ecotoxicity --- p.10 / Chapter 1.1.6.1 --- Toxicity towards microorganisms --- p.10 / Chapter 1.1.6.2 --- Toxicity towards invertebrates --- p.12 / Chapter 1.1.6.3 --- Toxicity towards vertebrates --- p.15 / Chapter 1.1.7 --- Environmental regulations --- p.16 / Chapter 1.2 --- Treatments of atrazine --- p.16 / Chapter 1.2.1 --- Physical treatments --- p.16 / Chapter 1.2.2 --- Chemical treatments --- p.18 / Chapter 1.2.3 --- Advanced Oxidation Processes (AOPs) --- p.19 / Chapter 1.2.4 --- Photocatalytic Oxidation (PCO) --- p.21 / Chapter 1.2.4.1 --- Cyanuric acid --- p.26 / Chapter 1.2.5 --- Biological treatments --- p.33 / Chapter 1.2.6 --- Integration of treatment methods --- p.36 / Chapter 2 --- Objectives --- p.38 / Chapter 3 --- Materials and methods --- p.39 / Chapter 3.1 --- Photocatalytic oxidation (PCO) reaction --- p.39 / Chapter 3.1.1 --- Chemical reagents --- p.39 / Chapter 3.1.2 --- Photocatalytic reactor --- p.39 / Chapter 3.1.3 --- Determination of atrazine --- p.43 / Chapter 3.1.4 --- Optimization of PCO reactions --- p.43 / Chapter 3.1.4.1 --- Effect of initial hydrogen peroxide concentration --- p.49 / Chapter 3.1.4.2 --- Effect of titanium dioxide concentration --- p.49 / Chapter 3.1.4.3 --- Effect of initial pH --- p.50 / Chapter 3.1.4.4 --- Effect of UV intensities --- p.50 / Chapter 3.1.4.5 --- Internal control of parameters --- p.50 / Chapter 3.1.4.6 --- Combination study of parameters: part one --- p.50 / Chapter 3.1.4.7 --- Combination study of parameters: part two --- p.50 / Chapter 3.1.5 --- Detection methods of atrazine degradation intermediates/products --- p.51 / Chapter 3.1.5.1 --- Gas chromatography-mass spectrometry --- p.51 / Chapter 3.1.5.2 --- High performance liquid chromatography --- p.51 / Chapter 3.1.6 --- Investigation of PCO treated solution --- p.54 / Chapter 3.1.6.1 --- Total organic carbon content --- p.54 / Chapter 3.1.6.2 --- Anions content --- p.54 / Chapter 3.1.6.3 --- pH --- p.56 / Chapter 3.1.6.4 --- Hydrogen peroxide content --- p.56 / Chapter 3.1.6.5 --- Toxicity --- p.56 / Chapter 3.1.6.5.1 --- Microtox® test --- p.56 / Chapter 3.1.6.5.2 --- Amphipod survival test --- p.57 / Chapter 3.2 --- Biodegradation reaction --- p.61 / Chapter 3.2.1 --- Chemical reagents --- p.61 / Chapter 3.2.2 --- Sampling --- p.62 / Chapter 3.2.3 --- Enrichment --- p.62 / Chapter 3.2.4 --- Isolation --- p.65 / Chapter 3.2.5 --- Purification --- p.65 / Chapter 3.2.6 --- Identification of bacterial strain --- p.65 / Chapter 3.2.6.1 --- Gram staining --- p.66 / Chapter 3.2.6.2 --- Catalase and oxidase tests --- p.66 / Chapter 3.2.6.3 --- Sherlock Microbial Identification System (MIDI) --- p.66 / Chapter 3.2.6.4 --- Biolog MicroLog´ёØ system (Biolog) --- p.67 / Chapter 3.2.7 --- Determination of cyanuric acid --- p.67 / Chapter 3.2.8 --- Selection of cyanuric acid degrading bacteria --- p.67 / Chapter 3.2.9 --- Optimization of reaction conditions --- p.67 / Chapter 3.2.9.1 --- Starting medium --- p.68 / Chapter 3.2.9.2 --- Effect of temperatures --- p.68 / Chapter 3.2.9.3 --- Effect of initial pH --- p.69 / Chapter 3.2.9.4 --- Effect of agitation rates --- p.69 / Chapter 3.2.9.5 --- Effect of initial cyanuric acid and glucose concentrations --- p.70 / Chapter 3.2.9.6 --- Investigation of biodegraded solution --- p.70 / Chapter 3.2.9.6.1 --- Glucose content --- p.70 / Chapter 3.2.9.6.2 --- Biodegradation metabolite(s) of cyanuric acid --- p.70 / Chapter 3.3 --- Integration of photocatalytic oxidation and biodegradation --- p.71 / Chapter 4 --- Results --- p.72 / Chapter 4.1 --- Photocatalytic oxidation (PCO) reaction --- p.72 / Chapter 4.1.1 --- Determination of atrazine --- p.72 / Chapter 4.1.2 --- Effect of aeration and mixing --- p.72 / Chapter 4.1.3 --- Effect of initial hydrogen peroxide concentrations --- p.72 / Chapter 4.1.4 --- Effect of titanium dioxide concentrations --- p.78 / Chapter 4.1.5 --- Effect of initial pH --- p.78 / Chapter 4.1.6 --- Effect of UV intensities --- p.78 / Chapter 4.1.7 --- Effect of different internal controls --- p.85 / Chapter 4.1.8 --- "Combination of UV intensities, initial hydrogen peroxide and titanium dioxide concentrations" --- p.85 / Chapter 4.1.9 --- "Combination of initial pH, atrazine concentrations and UV intensities" --- p.94 / Chapter 4.1.10 --- Degradation products detected by GC/MS --- p.94 / Chapter 4.1.11 --- Degradation products detected by HPLC --- p.94 / Chapter 4.1.12 --- Total organic carbon removal --- p.104 / Chapter 4.1.13 --- Anions content --- p.104 / Chapter 4.1.14 --- Solution pH --- p.104 / Chapter 4.1.15 --- Hydrogen peroxide content --- p.108 / Chapter 4.1.16 --- Microtox® test --- p.108 / Chapter 4.1.17 --- Amphipod survival test --- p.114 / Chapter 4.2 --- Biodegradation reaction --- p.118 / Chapter 4.2.1 --- Isolation of bacterial colonies --- p.118 / Chapter 4.2.2 --- Identification and characterization of the isolated bacteria --- p.118 / Chapter 4.2.3 --- Selection of cyanuric acid degrading species --- p.118 / Chapter 4.2.4 --- Effect of temperatures --- p.128 / Chapter 4.2.5 --- Effect of initial pH --- p.128 / Chapter 4.2.6 --- Effect of agitation rates --- p.128 / Chapter 4.2.7 --- Effect of cyanuric acid and glucose concentrations --- p.132 / Chapter 4.2.8 --- Glucose content --- p.132 / Chapter 4.2.9 --- Biodegradation metabolites of cyanuric acid --- p.132 / Chapter 4.2.10 --- Proposed pathway of atrazine degradation by biodegradation enhanced by PCO --- p.138 / Chapter 4.3 --- Integration of photocatalytic oxidation and biodegradation --- p.138 / Chapter 5 --- Discussion --- p.141 / Chapter 5.1 --- Photocatalytic oxidation (PCO) reaction --- p.141 / Chapter 5.1.1 --- Determination of atrazine --- p.141 / Chapter 5.1.2 --- Effect of aeration and mixing --- p.141 / Chapter 5.1.3 --- Effect of initial hydrogen peroxide concentrations --- p.141 / Chapter 5.1.4 --- Effect of titanium dioxide concentrations --- p.143 / Chapter 5.1.5 --- Effect of initial pH --- p.143 / Chapter 5.1.6 --- Effect of UV intensities --- p.144 / Chapter 5.1.7 --- Effect of different internal controls --- p.145 / Chapter 5.1.8 --- "Combination of UV intensities, initial hydrogen peroxide and titanium dioxide concentrations" --- p.145 / Chapter 5.1.9 --- "Combination of initial pH, atrazine concentrations and UV intensities" --- p.146 / Chapter 5.1.10 --- Degradation products detected by GC/MS --- p.146 / Chapter 5.1.11 --- Degradation products detected by HPLC --- p.147 / Chapter 5.1.12 --- Total organic carbon removal --- p.147 / Chapter 5.1.13 --- Anions content --- p.148 / Chapter 5.1.14 --- Solution pH --- p.149 / Chapter 5.1.15 --- Hydrogen peroxide content --- p.149 / Chapter 5.1.16 --- Microtox® test --- p.149 / Chapter 5.1.17 --- Amphipod survival test --- p.150 / Chapter 5.2 --- Biodegradation reaction --- p.151 / Chapter 5.2.1 --- Isolation of bacterial colonies --- p.151 / Chapter 5.2.2 --- Identification and characterization of the isolated bacteria --- p.151 / Chapter 5.2.3 --- Selection of cyanuric acid degrading species --- p.152 / Chapter 5.2.4 --- Effect of temperatures --- p.152 / Chapter 5.2.5 --- Effect of initial pH --- p.153 / Chapter 5.2.6 --- Effect of agitation rates --- p.153 / Chapter 5.2.7 --- Effect of cyanuric acid and glucose concentrations --- p.154 / Chapter 5.2.8 --- Glucose content --- p.154 / Chapter 5.2.9 --- Biodegradation metabolites of cyanuric acid --- p.155 / Chapter 5.2.10 --- Proposed degradation pathway of atrazine by biodegradation enhanced by PCO --- p.155 / Chapter 5.3 --- Integration of photocatalytic oxidation and biodegradation --- p.155 / Chapter 6 --- Conclusions --- p.159 / Chapter 7 --- References --- p.161 / Appendix1 --- p.174 / Appendix2 --- p.175

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_323841
Date January 2002
ContributorsChan, Cho-Yin., Chinese University of Hong Kong Graduate School. Division of Biology.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, xx, 180 leaves : ill. (some col.) ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0027 seconds