Return to search

A frequency-based BSS technique for speech source separation.

Ngan Lai Yin. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2003. / Includes bibliographical references (leaves 95-100). / Abstracts in English and Chinese. / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Blind Signal Separation (BSS) Methods --- p.4 / Chapter 1.2 --- Objectives of the Thesis --- p.6 / Chapter 1.3 --- Thesis Outline --- p.8 / Chapter 2 --- Blind Adaptive Frequency-Shift (BA-FRESH) Filter --- p.9 / Chapter 2.1 --- Cyclostationarity Properties --- p.10 / Chapter 2.2 --- Frequency-Shift (FRESH) Filter --- p.11 / Chapter 2.3 --- Blind Adaptive FRESH Filter --- p.12 / Chapter 2.4 --- Reduced-Rank BA-FRESH Filter --- p.14 / Chapter 2.4.1 --- CSP Method --- p.14 / Chapter 2.4.2 --- PCA Method --- p.14 / Chapter 2.4.3 --- Appropriate Choice of Rank --- p.14 / Chapter 2.5 --- Signal Extraction of Spectrally Overlapped Signals --- p.16 / Chapter 2.5.1 --- Simulation 1: A Fixed Rank --- p.17 / Chapter 2.5.2 --- Simulation 2: A Variable Rank --- p.18 / Chapter 2.6 --- Signal Separation of Speech Signals --- p.20 / Chapter 2.7 --- Chapter Summary --- p.22 / Chapter 3 --- Reverberant Environment --- p.23 / Chapter 3.1 --- Small Room Acoustics Model --- p.23 / Chapter 3.2 --- Effects of Reverberation to Speech Recognition --- p.27 / Chapter 3.2.1 --- Short Impulse Response --- p.27 / Chapter 3.2.2 --- Small Room Impulse Response Modelled by Image Method --- p.32 / Chapter 3.3 --- Chapter Summary --- p.34 / Chapter 4 --- Information Theoretic Approach for Signal Separation --- p.35 / Chapter 4.1 --- Independent Component Analysis (ICA) --- p.35 / Chapter 4.1.1 --- Kullback-Leibler (K-L) Divergence --- p.37 / Chapter 4.2 --- Information Maximization (Infomax) --- p.39 / Chapter 4.2.1 --- Stochastic Gradient Descent and Stability Problem --- p.41 / Chapter 4.2.2 --- Infomax and ICA --- p.41 / Chapter 4.2.3 --- Infomax and Maximum Likelihood --- p.42 / Chapter 4.3 --- Signal Separation by Infomax --- p.43 / Chapter 4.4 --- Chapter Summary --- p.45 / Chapter 5 --- Blind Signal Separation (BSS) in Frequency Domain --- p.47 / Chapter 5.1 --- Convolutive Mixing System --- p.48 / Chapter 5.2 --- Infomax in Frequency Domain --- p.52 / Chapter 5.3 --- Adaptation Algorithms --- p.54 / Chapter 5.3.1 --- Standard Gradient Method --- p.54 / Chapter 5.3.2 --- Natural Gradient Method --- p.55 / Chapter 5.3.3 --- Convergence Performance --- p.56 / Chapter 5.4 --- Subband Adaptation --- p.57 / Chapter 5.5 --- Energy Weighting --- p.59 / Chapter 5.6 --- The Permutation Problem --- p.61 / Chapter 5.7 --- Performance Evaluation --- p.63 / Chapter 5.7.1 --- De-reverberation Performance Factor --- p.63 / Chapter 5.7.2 --- De-Noise Performance Factor --- p.63 / Chapter 5.7.3 --- Spectral Signal-to-noise Ratio (SNR) --- p.65 / Chapter 5.8 --- Chapter Summary --- p.65 / Chapter 6 --- Simulation Results and Performance Analysis --- p.67 / Chapter 6.1 --- Small Room Acoustics Modelled by Image Method --- p.67 / Chapter 6.2 --- Signal Sources --- p.68 / Chapter 6.2.1 --- Cantonese Speech --- p.69 / Chapter 6.2.2 --- Noise --- p.69 / Chapter 6.3 --- De-Noise and De-Reverberation Performance Analysis --- p.69 / Chapter 6.3.1 --- Speech and White Noise --- p.73 / Chapter 6.3.2 --- Speech and Voice Babble Noise --- p.76 / Chapter 6.3.3 --- Two Female Speeches --- p.79 / Chapter 6.4 --- Recognition Accuracy Performance Analysis --- p.83 / Chapter 6.4.1 --- Speech and White Noise --- p.83 / Chapter 6.4.2 --- Speech and Voice Babble Noise --- p.84 / Chapter 6.4.3 --- Two Cantonese Speeches --- p.85 / Chapter 6.5 --- Chapter Summary --- p.87 / Chapter 7 --- Conclusions and Suggestions for Future Research --- p.88 / Chapter 7.1 --- Conclusions --- p.88 / Chapter 7.2 --- Suggestions for Future Research --- p.91 / Appendices --- p.92 / A The Proof of Stability Conditions for Stochastic Gradient De- scent Algorithm (Ref. (4.15)) --- p.92 / Bibliography --- p.95

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_324228
Date January 2003
ContributorsNgan, Lai Yin., Chinese University of Hong Kong Graduate School. Division of Electronic Engineering.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, xii, 100 leaves : ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0018 seconds