Return to search

Slope bioengineering in Hong Kong: a study of substrate properties and vegetation development.

Chiu Pik Ki Becky. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references (leaves 112-124). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgements --- p.v / Table of Contents --- p.vi / List of Tables --- p.x / List of Figures --- p.xi / List of Plates --- p.xii / Chapter Chapter One --- introduction / Chapter 1.1 --- Introduction --- p.1 / Chapter 1.2 --- Trends in slope design --- p.2 / Chapter 1.3 --- Bioengineering practices --- p.3 / Chapter 1.4 --- Factors affecting slope vegetation growth --- p.4 / Chapter 1.5 --- Conceptual framework of the study --- p.5 / Chapter 1.6 --- Objectives of the study --- p.8 / Chapter 1.7 --- Significance of the study --- p.9 / Chapter 1.8 --- Organization of the thesis --- p.9 / Chapter Chapter two --- Literature Review / Chapter 2.1 --- Introduction --- p.11 / Chapter 2.2 --- Slope bioengineering practices --- p.12 / Chapter 2.3 --- Local techniques --- p.14 / Chapter 2.4 --- Factors affecting performance of slope --- p.19 / Chapter 2.4.1 --- Species selection --- p.19 / Chapter 2.4.2 --- Site characteristics --- p.21 / Chapter 2.4.3 --- Physical properties of growth medium --- p.21 / Chapter 2.4.4 --- Nutrients and fertilization --- p.23 / Chapter 2.4.5 --- Water and irrigation --- p.25 / Chapter 2.4.6 --- Management --- p.28 / Chapter 2.5 --- Summary --- p.28 / Chapter chapter Three --- Common Slope Bioengineering Techniques in Hong Kong / Chapter 3.1 --- Introduction --- p.29 / Chapter 3.2 --- Study sites --- p.31 / Chapter 3.3 --- Methodology --- p.34 / Chapter 3.3.1 --- In situ substrate measurements --- p.34 / Chapter 3.3.2 --- Substrate sampling --- p.35 / Chapter 3.3.3 --- Laboratory analysis --- p.35 / Chapter 3.3.4 --- Vegetation performance --- p.39 / Chapter 3.3.5 --- Statistical analysis --- p.39 / Chapter 3.4 --- Results and discussion --- p.40 / Chapter 3.4.1 --- Physical properties of substrates --- p.40 / Chapter 3.4.2 --- Chemical properties of substrates --- p.42 / Chapter 3.4.3 --- Vegetation performance --- p.48 / Chapter 3.5 --- Summary --- p.55 / Chapter chapter Four --- Substrate Properties and Nutrient Dynamics / Chapter 4.1 --- Introduction --- p.57 / Chapter 4.2 --- Experimental design of trial plots --- p.58 / Chapter 4.3 --- Methodology --- p.62 / Chapter 4.3.1 --- Substrate sampling and measurement --- p.62 / Chapter 4.3.2 --- Laboratory analysis --- p.63 / Chapter 4.3.3 --- Vegetation coverage --- p.63 / Chapter 4.3.4 --- Statistical analysis --- p.64 / Chapter 4.4 --- Results and discussion --- p.64 / Chapter 4.4.1 --- General substrate properties --- p.64 / Chapter 4.4.2 --- Seasonal variation in substrate properties --- p.68 / Chapter 4.4.3 --- Comparison between hydro-mulching and fibered-soil --- p.71 / Chapter 4.4.4 --- Nutrients and vegetation performance --- p.72 / Chapter 4.5 --- Summary --- p.72 / Chapter chapter Five --- Effect of Water and Management Practices on Slope Vegetation / Chapter 5.1 --- Introduction --- p.74 / Chapter 5.2 --- Rationale of the experiment --- p.77 / Chapter 5.2.1 --- Substrate thickness --- p.77 / Chapter 5.2.2 --- Irrigation --- p.78 / Chapter 5.2.3 --- Trimming --- p.78 / Chapter 5.2.4 --- Potential revegetation species besides grasses --- p.78 / Chapter 5.3 --- Methodology --- p.80 / Chapter 5.3.1 --- In situ moisture measurement --- p.81 / Chapter 5.3.2 --- Vegetation coverage --- p.81 / Chapter 5.3.3 --- Statistical analysis --- p.81 / Chapter 5.4 --- Results and discussion --- p.82 / Chapter 5.4.1 --- Dynamics of water on slopes --- p.82 / Chapter 5.4.2 --- Water content and vegetation coverage --- p.85 / Chapter 5.4.3 --- Vegetation and rooting depth --- p.89 / Chapter 5.4.4 --- Vegetal response to management practices --- p.90 / Chapter 5.4.5 --- Species trial --- p.90 / Chapter 5.4.6 --- Invasion of species --- p.92 / Chapter 5.5 --- Summary --- p.92 / Chapter Chapter Six --- Limitations of Present Bioengineering Techniques / Chapter 6.1 --- Introduction --- p.94 / Chapter 6.2 --- Physical setting --- p.94 / Chapter 6.2.1 --- Steep gradient --- p.94 / Chapter 6.2.2 --- Shotcreted slope surface --- p.94 / Chapter 6.3 --- Substrate properties --- p.95 / Chapter 6.3.1 --- Substrate thickness --- p.95 / Chapter 6.3.2 --- Compaction --- p.96 / Chapter 6.3.3 --- Presence of wire mesh --- p.96 / Chapter 6.3.4 --- Heterogeneous properties --- p.97 / Chapter 6.3.5 --- Highly organic peat moss composition and C:N ratios --- p.97 / Chapter 6.4 --- Water stress --- p.98 / Chapter 6.5 --- Vegetation on slopes --- p.99 / Chapter 6.5.1 --- Species selection --- p.99 / Chapter 6.5.2 --- Isolation from natural vegetation --- p.100 / Chapter 6.6 --- Management and maintenance --- p.100 / Chapter 6.6.1 --- Timing of hydroseeding and transplanting --- p.100 / Chapter 6.6.2 --- Maintenance requirements --- p.101 / Chapter 6.6.3 --- Poor workmanship --- p.101 / Chapter 6.7 --- Ultimate goal of slope bioengineering --- p.102 / Chapter 6.8 --- Summary --- p.102 / Chapter Chapter Seven --- Conclusion / Chapter 7.1 --- Summary of major findings --- p.104 / Chapter 7.2 --- Implications of the study --- p.106 / Chapter 7.2.1 --- Use of exotic grasses and naturalness of bioengineered slopes --- p.106 / Chapter 7.2.2 --- Substrate thickness --- p.107 / Chapter 7.2.3 --- "Irrigation under the principle of ""low maintenance""" --- p.108 / Chapter 7.3 --- Limitations of the study --- p.108 / Chapter 7.4 --- Suggestions for further research --- p.110 / References --- p.112 / Appendices --- p.125

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_324938
Date January 2004
ContributorsChiu, Pik Ki Becky., Chinese University of Hong Kong Graduate School. Division of Geography and Resource Management.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, xii, v, 135 leaves : ill. (some col.) ; 30 cm.
CoverageChina, Hong Kong
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0019 seconds