Return to search

Adaptive power control in wireless networks for scalable and fair capacity distributions.

Ho Wang Hei. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 93-94). / Abstracts in English and Chinese. / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Motivation and Contributions --- p.1 / Chapter 1.1.1 --- Scalability of Network Capacity with Power Control --- p.1 / Chapter 1.1.2 --- Trade-off between network capacity and fairness with Power Control --- p.3 / Chapter 1.2 --- Related Work --- p.4 / Chapter 1.3 --- Organization of the Thesis --- p.6 / Chapter Chapter 2 --- Background --- p.8 / Chapter 2.1 --- Hidden- and Exposed-node Problems --- p.8 / Chapter 2.1.1 --- HN-free Design (HFD) --- p.9 / Chapter 2.1.2 --- Non-Scalable Capacity in 802.11 caused by EN --- p.11 / Chapter 2.2 --- Shortcomings of Minimum-Transmit-Power Approach --- p.13 / Chapter Chapter 3 --- Simultaneous Transmissions Constraints with Power Control --- p.15 / Chapter 3.1 --- Physical-Collision Constraints --- p.16 / Chapter 3.1.1 --- Protocol-Independent Physical-Collision Constraints --- p.17 / Chapter 3.1.2 --- Protocol-Specific Physical-Collision Constraints --- p.17 / Chapter 3.2 --- Protocol-Collision-Prevention Constraints --- p.18 / Chapter 3.2.1 --- Transmitter-Side Carrier-Sensing Constraints --- p.18 / Chapter 3.2.2 --- Receiver-Side Carrier-Sensing Constraints --- p.19 / Chapter Chapter 4 --- Graph Models for Capturing Transmission Constraints and Hidden-node Problems --- p.20 / Chapter 4.1 --- Link-Interference Graph from Physical-Collision Constraints --- p.21 / Chapter 4.2 --- Protocol-Collision-Prevention Graphs --- p.22 / Chapter 4.3 --- Ideal Protocol-Collision-Prevention Graphs --- p.22 / Chapter 4.4 --- Definition of HN and EN and their Investigation using Graph Model --- p.23 / Chapter 4.5 --- Attacking Cases --- p.26 / Chapter Chapter 5 --- Scalability of Network Capacity with Adaptive Power Control --- p.27 / Chapter 5.1 --- Selective Disregard of NAVs (SDN) --- p.27 / Chapter 5.2 --- Scalability of Network Capacity: Analytical Discussion --- p.29 / Chapter 5.3 --- Adaptive Power Control for SDN --- p.31 / Chapter 5.3.1 --- Per-iteration Power Adjustment --- p.32 / Chapter 5.3.2 --- Power Control Scheduling Strategy --- p.35 / Chapter 5.3.3 --- Power Exchange Algorithm --- p.39 / Chapter 5.3.4 --- Comparison of Scheduling Strategies --- p.41 / Chapter 5.4 --- Scalability of Network Capacity: Numerical Results --- p.43 / Chapter Chapter 6 --- Decoupled Adaptive Power Control (DAPC) --- p.45 / Chapter 6.1 --- Per-iteration Power Adjustment --- p.45 / Chapter 6.2 --- Power Exchange Algorithm --- p.47 / Chapter 6.3 --- Implementation of DAPC --- p.48 / Chapter 6.4 --- Deadlock Problem in DAPC --- p.50 / Chapter Chapter 7 --- Progressive-Uniformly-Scaled Power Control (PUSPC): Deadlock-free Design --- p.53 / Chapter 7.1 --- Algorithm of PUSPC --- p.53 / Chapter 7.2 --- Deadlock-free property of PUSPC --- p.60 / Chapter 7.3 --- Deadlock Resolution of DAPC using PUSPC --- p.62 / Chapter Chapter 8 --- Incremental Power Adaptation --- p.65 / Chapter 8.1 --- Incremental Power Adaptation (IPA) --- p.65 / Chapter 8.2 --- Maximum Allowable Power in EPA --- p.68 / Chapter 8.3 --- Numerical Results of IPA --- p.71 / Chapter Chapter 9 --- Numerical Results and the Trade-off between EN and HN --- p.78 / Chapter Chapter 10 --- Conclusion --- p.83 / Appendix I: Proof of the Correct Operation of PE Algorithm for APC for SDN --- p.86 / Appendix II: Proof of the Correct Operation of PE Algorithm for DAPC --- p.89 / Appendix III: Scalability of the Communication Cost of PE Algorithm --- p.91 / Bibliography --- p.93

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_325567
Date January 2006
ContributorsHo, Wang Hei., Chinese University of Hong Kong Graduate School. Division of Information Engineering.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, xiii, 94 leaves : ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0019 seconds