Return to search

Position determination of mobile unit based on inertial navigation system.

Yip, Wai Lee. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 119-124). / Abstracts in English and Chinese. / Abstract --- p.i / 摘要 --- p.ii / Acknowledgement --- p.iii / Table of Content --- p.iv / List of Figure --- p.vi / List of table --- p.viii / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Motivation --- p.1 / Chapter 1.2 --- Background information --- p.2 / Chapter 1.2.1 --- Overview of positioning technologies --- p.2 / Chapter 1.2.2 --- Comparison between different positioning systems --- p.7 / Chapter 1.2.3 --- Recent works related to INS --- p.9 / Chapter 1.3 --- Objective --- p.11 / Chapter 1.4 --- Organization of thesis --- p.11 / Chapter Chapter 2 --- Literature Study --- p.13 / Chapter 2.1 --- Introduction to INS --- p.13 / Chapter 2.1.1 --- Coordinate Frames --- p.13 / Chapter 2.1.2 --- Gimbaled INS --- p.16 / Chapter 2.1.3 --- Strapdown INS --- p.17 / Chapter 2.1.4 --- Conventional algorithm of strapdown INS --- p.17 / Chapter 2.2 --- Inertial sensors --- p.19 / Chapter 2.2.1 --- Gyroscope --- p.19 / Chapter 2.2.2 --- Accelerometer --- p.20 / Chapter 2.3 --- Previous works --- p.22 / Chapter 2.4 --- GF-INS --- p.23 / Chapter 2.5 --- Summary --- p.25 / Chapter Chapter 3 --- Performance of MEMS accelerometer in position determination --- p.27 / Chapter 3.1 --- Basic principle --- p.27 / Chapter 3.2 --- Numeric integration --- p.28 / Chapter 3.3 --- Experimental setup --- p.30 / Chapter 3.3.1 --- MEMS Accelerometer --- p.30 / Chapter 3.3.2 --- Microcontroller --- p.32 / Chapter 3.3.3 --- System architecture --- p.33 / Chapter 3.3.4 --- Testing platform --- p.34 / Chapter 3.4 --- Initial calibration and filtering --- p.37 / Chapter 3.4.1 --- Convert ADC reading to acceleration --- p.37 / Chapter 3.4.2 --- Identify configuration error --- p.38 / Chapter 3.4.3 --- Implement low pass filter --- p.39 / Chapter 3.5 --- Experimental results --- p.40 / Chapter 3.5.1 --- Results --- p.40 / Chapter 3.5.2 --- Discussion --- p.43 / Chapter 3.6 --- Summary --- p.45 / Chapter Chapter 4 --- Performance Improvement --- p.46 / Chapter 4.1 --- Fuzzy logic based steady state detector --- p.46 / Chapter 4.1.1 --- Principle --- p.46 / Chapter 4.1.2 --- Experimental result --- p.48 / Chapter 4.2 --- Kalman filtering --- p.50 / Chapter 4.2.1 --- Discrete Kalman filter --- p.50 / Chapter 4.2.2 --- Combine with fuzzy logic based steady state detector --- p.52 / Chapter 4.2.3 --- Experimental results --- p.54 / Chapter 4.3 --- Summary --- p.58 / Chapter Chapter 5 --- Construction of GF-INS --- p.59 / Chapter 5.1 --- Principle of GF-INS --- p.59 / Chapter 5.1.1 --- Algorithm --- p.59 / Chapter 5.1.2 --- Comparing error of GF-INS and conventional INS --- p.66 / Chapter 5.1.3 --- Simulation study --- p.67 / Chapter 5.2 --- Experimental setup --- p.73 / Chapter 5.3 --- Experimental Results --- p.75 / Chapter 5.4 --- Summary --- p.81 / Chapter Chapter 6 --- Improvement on the GF-INS --- p.82 / Chapter 6.1 --- Configuration error compensation --- p.82 / Chapter 6.1.1 --- "Identify bias, scale factor and sensing direction error" --- p.83 / Chapter 6.1.2 --- Identify position error --- p.86 / Chapter 6.1.3 --- Compensator design --- p.89 / Chapter 6.1.4 --- Simulation --- p.91 / Chapter 6.2 --- Fuzzy rule based motion state detector --- p.97 / Chapter 6.2.1 --- Relation of data in different motions --- p.97 / Chapter 6.2.2 --- Fuzzy system --- p.99 / Chapter 6.2.3 --- Membership function training with gradient descent --- p.101 / Chapter 6.3 --- Experimental results and discussion --- p.104 / Chapter 6.3.1 --- Configuration errors --- p.104 / Chapter 6.3.2 --- Compensator --- p.106 / Chapter 6.3.3 --- Fuzzy rule based motion state detector --- p.107 / Chapter 6.3.4 --- Comparing the performance of both methods --- p.110 / Chapter 6.3.5 --- Comparing GF-INS and one dimensional INS --- p.112 / Chapter 6.3.6 --- Discussion --- p.113 / Chapter 6.4 --- Summary --- p.115 / Chapter Chapter 7 --- Conclusions and Future works --- p.116 / Reference --- p.119

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_326321
Date January 2008
ContributorsYip, Wai Lee., Chinese University of Hong Kong Graduate School. Division of Mechanical and Automation Engineering.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, viii, 124 leaves : ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0024 seconds