Unsupervised self-adaptive abnormal behavior detection for real-time surveillance. / 實時無監督自適應異常行為檢測系統 / Shi shi wu jian du zi shi ying yi chang xing wei jian ce xi tong

Yu, Tsz Ho. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 95-100). / Abstract also in Chinese. / Chapter 1 --- Introduction --- p.2 / Chapter 1.1 --- Surveillance and Computer Vision --- p.3 / Chapter 1.2 --- The Need for Abnormal Behavior Detection --- p.3 / Chapter 1.2.1 --- The Motivation --- p.3 / Chapter 1.2.2 --- Choosing the Right Surveillance Target --- p.5 / Chapter 1.3 --- Abnormal Behavior Detection: An Overview --- p.6 / Chapter 1.3.1 --- Challenges in Detecting Abnormal Behaviors --- p.6 / Chapter 1.3.2 --- Limitations of Existing Approaches --- p.8 / Chapter 1.3.3 --- New Design Concepts --- p.9 / Chapter 1.3.4 --- Requirements for Abnormal Behavior Detection --- p.10 / Chapter 1.4 --- Contributions --- p.11 / Chapter 1.4.1 --- An Unsupervised Experience-based Approach for Abnormal Behavior Detection --- p.11 / Chapter 1.4.2 --- Motion Histogram Transform: A Novel Feature Descriptors --- p.12 / Chapter 1.4.3 --- Real-time Algorithm for Abnormal Behavior Detection --- p.12 / Chapter 1.5 --- Thesis Organization --- p.13 / Chapter 2 --- Literature Review --- p.14 / Chapter 2.1 --- From Segmentation to Visual Tracking --- p.14 / Chapter 2.1.1 --- Environment Modeling and Segmentation --- p.15 / Chapter 2.1.2 --- Spatial-temporal Feature Extraction --- p.18 / Chapter 2.2 --- Detecting Irregularities in Videos --- p.21 / Chapter 2.2.1 --- Model-based Method --- p.22 / Chapter 2.2.2 --- Non Model-based Method --- p.26 / Chapter 3 --- Design Framework --- p.29 / Chapter 3.1 --- Dynamic Scene and Behavior Model --- p.30 / Chapter 3.1.1 --- Images Sequences and Video --- p.30 / Chapter 3.1.2 --- Motions and Behaviors in Video --- p.31 / Chapter 3.1.3 --- Discovering Abnormal Behavior --- p.32 / Chapter 3.1.4 --- Problem Definition --- p.33 / Chapter 3.1.5 --- System Assumption --- p.34 / Chapter 3.2 --- Methodology --- p.35 / Chapter 3.2.1 --- Potential Improvements --- p.35 / Chapter 3.2.2 --- The Design Framework --- p.36 / Chapter 4 --- Implementation --- p.40 / Chapter 4.1 --- Preprocessing --- p.40 / Chapter 4.1.1 --- Data Input --- p.41 / Chapter 4.1.2 --- Motion Detection --- p.41 / Chapter 4.1.3 --- The Gaussian Mixture Background Model --- p.43 / Chapter 4.2 --- Feature Extraction --- p.46 / Chapter 4.2.1 --- Optical Flow Estimation --- p.47 / Chapter 4.2.2 --- Motion Histogram Transforms --- p.53 / Chapter 4.3 --- Feedback Learning --- p.56 / Chapter 4.3.1 --- The Observation Matrix --- p.58 / Chapter 4.3.2 --- Eigenspace Transformation --- p.58 / Chapter 4.3.3 --- Self-adaptive Update Scheme --- p.61 / Chapter 4.3.4 --- Summary --- p.62 / Chapter 4.4 --- Classification --- p.63 / Chapter 4.4.1 --- Detecting Abnormal Behavior via Statistical Saliencies --- p.64 / Chapter 4.4.2 --- Determining Feedback --- p.65 / Chapter 4.5 --- Localization and Output --- p.66 / Chapter 4.6 --- Conclusion --- p.69 / Chapter 5 --- Experiments --- p.71 / Chapter 5.1 --- Experiment Setup --- p.72 / Chapter 5.2 --- A Summary of Experiments --- p.74 / Chapter 5.3 --- Experiment Results: Part 1 --- p.78 / Chapter 5.4 --- Experiment Results: Part 2 --- p.81 / Chapter 5.5 --- Experiment Results: Part 3 --- p.83 / Chapter 5.6 --- Experiment Results: Part 4 --- p.86 / Chapter 5.7 --- Analysis and Conclusion --- p.86 / Chapter 6 --- Conclusions --- p.88 / Chapter 6.1 --- Application Extensions --- p.88 / Chapter 6.2 --- Limitations --- p.89 / Chapter 6.2.1 --- Surveillance Range --- p.89 / Chapter 6.2.2 --- Preparation Time for the System --- p.89 / Chapter 6.2.3 --- Calibration of Background Model --- p.90 / Chapter 6.2.4 --- Instability of Optical Flow Feature Extraction --- p.91 / Chapter 6.2.5 --- Lack of 3D information --- p.91 / Chapter 6.2.6 --- Dealing with Complex Behavior Patterns --- p.92 / Chapter 6.2.7 --- Potential Improvements --- p.92 / Chapter 6.2.8 --- New Method for Classification --- p.93 / Chapter 6.2.9 --- Introduction of Dynamic Texture as a Feature --- p.93 / Chapter 6.2.10 --- Using Multiple-camera System --- p.93 / Chapter 6.3 --- Summary --- p.94 / Bibliography --- p.95

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_326805
Date January 2009
ContributorsYu, Tsz Ho., Chinese University of Hong Kong Graduate School. Division of Computer Science and Engineering.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, xiii, 100 leaves : ill. (chiefly col.) ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0025 seconds