Yan, Renfei. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 69-77). / Abstract also in Chinese. / ABSTRACT --- p.I / ACKNOWLEDGEMENT --- p.V / LIST OF FIGURES --- p.VI / LIST OF TABLES --- p.VIII / LIST OF ABBREVIATIONS --- p.IX / Chapter CHAPTER 1. --- INTRODUCTION TO BLOOD PRESSURE MEASURING DEVICES AND EVALUATION STANDARDS --- p.1 / Chapter 1.1. --- Current situation on hypertension --- p.1 / Chapter A. --- Prevalence of hypertension --- p.1 / Chapter B. --- Low awareness of hypertension --- p.1 / Chapter 1.2. --- Calls for better management of hypertension --- p.2 / Chapter 1.3. --- Blood pressure measuring devices --- p.3 / Chapter A. --- Conventional devices and their limitations --- p.3 / Chapter B. --- Wearable cuff-less devices --- p.4 / Chapter 1.4. --- Evaluation of the wearable cuff-less devices --- p.6 / Chapter 1.5. --- Objectives of the thesis --- p.7 / Chapter 1.6. --- Structure of the thesis --- p.7 / Chapter CHAPTER 2. --- REVIEW ON CURRENT STANDARDS --- p.8 / Chapter 2.1. --- Introduction to current standards --- p.8 / Chapter A. --- AAMI standard --- p.8 / Chapter B. --- BHS protocol --- p.8 / Chapter C. --- ESH protocol --- p.9 / Chapter 2.2. --- Comparison of current standards --- p.9 / Chapter A. --- Evaluation scope --- p.9 / Chapter B. --- Validation protocol --- p.10 / Chapter C. --- Accuracy criteria --- p.10 / Chapter D. --- Testing reference --- p.13 / Chapter E. --- Recruitment of subjects --- p.13 / Chapter F. --- Ambulatory monitors --- p.14 / Chapter G. --- Special groups of population --- p.15 / Chapter H. --- Statistical considerations --- p.16 / Chapter 2.3. --- Major challenges for the evaluation of cuff-less devices --- p.17 / Chapter A. --- Lack of experimental data --- p.19 / Chapter B. --- Re-examination of the statistical considerations --- p.19 / Chapter C. --- Feature oriented design of the validation protocol --- p.19 / Chapter D. --- Selection of testing reference --- p.79 / Chapter CHAPTER 3. --- ERROR DISTRIBUTION MODEL --- p.21 / Chapter 3.1. --- Distribution assumption in current standards --- p.21 / Chapter 3.2. --- Distribution analysis from published reports --- p.22 / Chapter A. --- Methodology --- p.22 / Chapter B. --- Data analysis --- p.23 / Chapter C. --- Results --- p.23 / Chapter 3.3. --- Distribution analysis on a cuff-less device --- p.29 / Chapter A. --- Experiment --- p.29 / Chapter B. --- Data analysis --- p.31 / Chapter C. --- Results --- p.31 / Chapter 3.4. --- Discussion --- p.33 / Chapter A. --- Supporting evidence for t4 distribution --- p.33 / Chapter B. --- Implications for the application of t4 distribution --- p.34 / Chapter 3.5. --- Section Summary --- p.35 / Chapter CHAPTER 4. --- EVALUATION SCALE TO ASSESS THE ACCURACY --- p.36 / Chapter 4.1. --- Considerations for parameter selection --- p.37 / Chapter A. --- Outlying errors and system bias --- p.37 / Chapter B. --- Accuracy at different levels of blood pressure --- p.37 / Chapter 4.2. --- Description of selected parameters --- p.38 / Chapter 4.3. --- Theoretical relationship between “new´ح and “old´ح parameters --- p.38 / Chapter A. --- Mathematical relationship --- p.39 / Chapter B. --- Mapping relationship --- p.40 / Chapter 4.4. --- Assessment of accuracy at increasing blood pressure levels --- p.41 / Chapter A. --- Data transformation --- p.41 / Chapter B. --- Experimental study --- p.41 / Chapter 4.5. --- Discussion and application --- p.43 / Chapter A. --- Parameter selection --- p.43 / Chapter B. --- Sample size --- p.45 / Chapter C. --- Accuracy criteria --- p.46 / Chapter 4.6. --- Section summary --- p.47 / Chapter CHAPTER 5. --- FEATURE ORIENTED PROTOCOL DESIGN --- p.48 / Chapter 5.1. --- Rationale of accuracy assessment with BP change --- p.48 / Chapter 5.2. --- Experiment one --- p.49 / Chapter 5.3. --- Experiment two --- p.49 / Chapter 5.4. --- Data analysis --- p.49 / Chapter 5.5. --- Results --- p.50 / Chapter A. --- Experiment one --- p.50 / Chapter B. --- Experiment two --- p.52 / Chapter 5.6. --- Discussion --- p.58 / Chapter A. --- Difference between cuff-less and cuff-based devices --- p.58 / Chapter B. --- Correlation between accuracy and blood pressure changes --- p.58 / Chapter C. --- Inducement of blood pressure change --- p.59 / Chapter D. --- Other factors affect the accuracy --- p.60 / Chapter 5.7. --- Section summary --- p.61 / Chapter CHAPTER 6. --- PROPOSAL FOR THE EVALUATION OF WEARABLE CUFF-LESS DEVICES --- p.62 / Chapter 6.1. --- Scope --- p.62 / Chapter 6.2. --- Purpose --- p.62 / Chapter 6.3. --- Subject selection --- p.63 / Chapter 6.4. --- Main validation --- p.64 / Chapter A. --- Static test --- p.64 / Chapter B. --- Test with blood pressure change --- p.65 / Chapter C. --- Test after a certain period of time --- p.65 / Chapter 6.5. --- Data analysis and reporting --- p.66 / Chapter A. --- Statistical report --- p.66 / Chapter B. --- Graphical representation --- p.67 / Chapter 6.6. --- Conclusion and future work --- p.67 / REFERENCES --- p.69 / LIST OF PUBLICATIONS AND AWARDS --- p.78
Identifer | oai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_326836 |
Date | January 2009 |
Contributors | Yan, Renfei., Chinese University of Hong Kong Graduate School. Division of Electronic Engineering. |
Source Sets | The Chinese University of Hong Kong |
Language | English, Chinese |
Detected Language | English |
Type | Text, bibliography |
Format | print, xiii, 78 leaves : ill. ; 30 cm. |
Rights | Use of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/) |
Page generated in 0.0021 seconds