Evaluation of the wearable cuff-less blood pressure measuring devices.

Yan, Renfei. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 69-77). / Abstract also in Chinese. / ABSTRACT --- p.I / ACKNOWLEDGEMENT --- p.V / LIST OF FIGURES --- p.VI / LIST OF TABLES --- p.VIII / LIST OF ABBREVIATIONS --- p.IX / Chapter CHAPTER 1. --- INTRODUCTION TO BLOOD PRESSURE MEASURING DEVICES AND EVALUATION STANDARDS --- p.1 / Chapter 1.1. --- Current situation on hypertension --- p.1 / Chapter A. --- Prevalence of hypertension --- p.1 / Chapter B. --- Low awareness of hypertension --- p.1 / Chapter 1.2. --- Calls for better management of hypertension --- p.2 / Chapter 1.3. --- Blood pressure measuring devices --- p.3 / Chapter A. --- Conventional devices and their limitations --- p.3 / Chapter B. --- Wearable cuff-less devices --- p.4 / Chapter 1.4. --- Evaluation of the wearable cuff-less devices --- p.6 / Chapter 1.5. --- Objectives of the thesis --- p.7 / Chapter 1.6. --- Structure of the thesis --- p.7 / Chapter CHAPTER 2. --- REVIEW ON CURRENT STANDARDS --- p.8 / Chapter 2.1. --- Introduction to current standards --- p.8 / Chapter A. --- AAMI standard --- p.8 / Chapter B. --- BHS protocol --- p.8 / Chapter C. --- ESH protocol --- p.9 / Chapter 2.2. --- Comparison of current standards --- p.9 / Chapter A. --- Evaluation scope --- p.9 / Chapter B. --- Validation protocol --- p.10 / Chapter C. --- Accuracy criteria --- p.10 / Chapter D. --- Testing reference --- p.13 / Chapter E. --- Recruitment of subjects --- p.13 / Chapter F. --- Ambulatory monitors --- p.14 / Chapter G. --- Special groups of population --- p.15 / Chapter H. --- Statistical considerations --- p.16 / Chapter 2.3. --- Major challenges for the evaluation of cuff-less devices --- p.17 / Chapter A. --- Lack of experimental data --- p.19 / Chapter B. --- Re-examination of the statistical considerations --- p.19 / Chapter C. --- Feature oriented design of the validation protocol --- p.19 / Chapter D. --- Selection of testing reference --- p.79 / Chapter CHAPTER 3. --- ERROR DISTRIBUTION MODEL --- p.21 / Chapter 3.1. --- Distribution assumption in current standards --- p.21 / Chapter 3.2. --- Distribution analysis from published reports --- p.22 / Chapter A. --- Methodology --- p.22 / Chapter B. --- Data analysis --- p.23 / Chapter C. --- Results --- p.23 / Chapter 3.3. --- Distribution analysis on a cuff-less device --- p.29 / Chapter A. --- Experiment --- p.29 / Chapter B. --- Data analysis --- p.31 / Chapter C. --- Results --- p.31 / Chapter 3.4. --- Discussion --- p.33 / Chapter A. --- Supporting evidence for t4 distribution --- p.33 / Chapter B. --- Implications for the application of t4 distribution --- p.34 / Chapter 3.5. --- Section Summary --- p.35 / Chapter CHAPTER 4. --- EVALUATION SCALE TO ASSESS THE ACCURACY --- p.36 / Chapter 4.1. --- Considerations for parameter selection --- p.37 / Chapter A. --- Outlying errors and system bias --- p.37 / Chapter B. --- Accuracy at different levels of blood pressure --- p.37 / Chapter 4.2. --- Description of selected parameters --- p.38 / Chapter 4.3. --- Theoretical relationship between “new´ح and “old´ح parameters --- p.38 / Chapter A. --- Mathematical relationship --- p.39 / Chapter B. --- Mapping relationship --- p.40 / Chapter 4.4. --- Assessment of accuracy at increasing blood pressure levels --- p.41 / Chapter A. --- Data transformation --- p.41 / Chapter B. --- Experimental study --- p.41 / Chapter 4.5. --- Discussion and application --- p.43 / Chapter A. --- Parameter selection --- p.43 / Chapter B. --- Sample size --- p.45 / Chapter C. --- Accuracy criteria --- p.46 / Chapter 4.6. --- Section summary --- p.47 / Chapter CHAPTER 5. --- FEATURE ORIENTED PROTOCOL DESIGN --- p.48 / Chapter 5.1. --- Rationale of accuracy assessment with BP change --- p.48 / Chapter 5.2. --- Experiment one --- p.49 / Chapter 5.3. --- Experiment two --- p.49 / Chapter 5.4. --- Data analysis --- p.49 / Chapter 5.5. --- Results --- p.50 / Chapter A. --- Experiment one --- p.50 / Chapter B. --- Experiment two --- p.52 / Chapter 5.6. --- Discussion --- p.58 / Chapter A. --- Difference between cuff-less and cuff-based devices --- p.58 / Chapter B. --- Correlation between accuracy and blood pressure changes --- p.58 / Chapter C. --- Inducement of blood pressure change --- p.59 / Chapter D. --- Other factors affect the accuracy --- p.60 / Chapter 5.7. --- Section summary --- p.61 / Chapter CHAPTER 6. --- PROPOSAL FOR THE EVALUATION OF WEARABLE CUFF-LESS DEVICES --- p.62 / Chapter 6.1. --- Scope --- p.62 / Chapter 6.2. --- Purpose --- p.62 / Chapter 6.3. --- Subject selection --- p.63 / Chapter 6.4. --- Main validation --- p.64 / Chapter A. --- Static test --- p.64 / Chapter B. --- Test with blood pressure change --- p.65 / Chapter C. --- Test after a certain period of time --- p.65 / Chapter 6.5. --- Data analysis and reporting --- p.66 / Chapter A. --- Statistical report --- p.66 / Chapter B. --- Graphical representation --- p.67 / Chapter 6.6. --- Conclusion and future work --- p.67 / REFERENCES --- p.69 / LIST OF PUBLICATIONS AND AWARDS --- p.78

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_326836
Date January 2009
ContributorsYan, Renfei., Chinese University of Hong Kong Graduate School. Division of Electronic Engineering.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, xiii, 78 leaves : ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0021 seconds