Cuffless calibration and estimation of continuous arterial blood pressure.

Gu, Wenbo. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references. / Abstract also in Chinese. / Acknowledgment --- p.i / Abstract --- p.ii / 摘要 --- p.iii / List of Figures --- p.vi / List of Tables --- p.vii / List of Abbreviations --- p.viii / Contents --- p.ix / Chapter 1. --- Introduction --- p.1 / Chapter 1.1. --- Arterial blood pressure and its importance --- p.1 / Chapter 1.2. --- Current methods for non-invasive blood pressure measurement --- p.4 / Chapter 1.2.1. --- The auscultatory method (mercury sphygmomanometer) --- p.4 / Chapter 1.2.2. --- The oscillometric method --- p.5 / Chapter 1.2.3. --- The tonometric method --- p.7 / Chapter 1.2.4. --- The volume-clamp method --- p.7 / Chapter 1.3. --- Blood pressure estimation based on pulse arrival time --- p.8 / Chapter 1.4. --- Objectives and structures of this thesis --- p.10 / Chapter 2. --- Hemodynamic models: relationship between PAT and BP --- p.14 / Chapter 2.1. --- The generation of arterial pulsation --- p.14 / Chapter 2.2. --- Pulse wave velocity along the arterial wall --- p.15 / Chapter 2.2.1. --- Moens-Korteweg equation --- p.15 / Chapter 2.2.2. --- Bergel wave velocity --- p.18 / Chapter 2.3. --- Relationship between PWV and BP --- p.19 / Chapter 2.3.1. --- Bramwell-Hill´ةs model --- p.20 / Chapter 2.3.2. --- Volume-pressure relationship --- p.20 / Chapter 2.3.3. --- Hughes' model --- p.22 / Chapter 2.4. --- The theoretical expression of PAT-BP relationship --- p.23 / Chapter 3. --- Estimation and calibration of arterial BP based on PAT --- p.25 / Chapter 3.1. --- PAT measurement --- p.25 / Chapter 3.1.1. --- Principle of ECG measurement --- p.25 / Chapter 3.1.2. --- Principle of PPG measurement --- p.26 / Chapter 3.1.3. --- Calculation of PAT --- p.28 / Chapter 3.2. --- Calibration methods for PAT-BP estimation --- p.29 / Chapter 3.2.1. --- Calibration based on cuff BP readings --- p.30 / Chapter 3.2.2. --- Calibration by hydrostatic pressure changes --- p.31 / Chapter 3.2.3. --- Calibration by multiple regression --- p.33 / Chapter 3.3. --- Model-based calibration with PPG waveform parameters --- p.34 / Chapter 3.3.1. --- Model-based equation with parameters from PPG waveform --- p.34 / Chapter 3.3.2. --- Selection of parameters from PPG waveform --- p.36 / Chapter 4. --- Cuffless calibration approach using PPG waveform parameter for PAT-BP estimation --- p.43 / Chapter 4.1. --- Introduction --- p.43 / Chapter 4.2. --- Experiment I: young group in sitting position including rest and after exercise states --- p.43 / Chapter 4.2.1. --- Experiment protocol --- p.43 / Chapter 4.2.2. --- Data Analysis --- p.44 / Chapter 4.2.3. --- Experiment results --- p.46 / Chapter 4.3. --- Experiment II: over-month observation using wearable device in sitting position --- p.48 / Chapter 4.3.1. --- Body sensor network for blood pressure estimation --- p.49 / Chapter 4.3.2. --- Experiment protocol and data collection --- p.50 / Chapter 4.3.3. --- Experiment results --- p.50 / Chapter 4.4. --- Experiment III: contactless monitoring in supine position --- p.51 / Chapter 4.4.1. --- The design of the contactless system --- p.52 / Chapter 4.4.2. --- Experiment protocol and data collection --- p.53 / Chapter 4.4.3. --- Experiment results --- p.53 / Chapter 4.5. --- Discussion --- p.55 / Chapter 4.5.1. --- Discussion of Experiments I and II --- p.55 / Chapter 4.5.2. --- Discussion of Experiments II and III --- p.57 / Chapter 4.5.3. --- Conclusion --- p.58 / Chapter 5. --- Cuff-based calibration approach for BP estimation in supine position --- p.61 / Chapter 5.1. --- Introduction --- p.61 / Chapter 5.2. --- Experiment protocol --- p.61 / Chapter 5.2.1. --- Experiment IV: exercise experiment in supine position in lab --- p.61 / Chapter 5.2.2. --- Experiment V: exercise experiment in supine position in PWH --- p.63 / Chapter 5.3. --- Data analysis --- p.65 / Chapter 5.3.1. --- Partition of signal trials and selection of datasets --- p.65 / Chapter 5.3.2. --- PPG waveform processing --- p.66 / Chapter 5.4. --- Experiment results --- p.68 / Chapter 5.4.1. --- Range and variation of reference SBP --- p.68 / Chapter 5.4.2. --- PAT-BP individual best regression --- p.69 / Chapter 5.4.3. --- Multiple regression using ZX and arm length --- p.72 / Chapter 5.4.4. --- One-cuff calibration improved by PPG waveform parameter --- p.72 / Chapter 5.5. --- Discussion --- p.74 / Chapter 6. --- Conclusion --- p.76

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_326882
Date January 2009
ContributorsGu, Wenbo., Chinese University of Hong Kong Graduate School. Division of Electronic Engineering.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, x, 77 leaves : ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0026 seconds