A low-cost active RFID indoor locationing system using phased array technology. / Low-cost active radio frequency identification indoor locationing system using phased array technology

近十年來,無線通訊技術、流動電話服務以及無線網絡的發展一日千里。不單止為社會帶來很多新的技術及先進的設備,更加帶來了許多新穎的應用構想。其中最被廣泛討論的要數室內無線實時定位系統。室內定位,顧名思義就是一種對一個或多個室內目標進行定位及追蹤的技術。這種技術的潛在應用非常多元化,例如倉庫管理、人力資源調配等等。透過這種技術可以使一些室內位置信息相關的服務更加自動化,從而提升服務效率。正因為市場狂熱的需求,近年來室內無線實時定位系統一直都是一個熱門的研究課題。 / 本論文的上半部主要是討論一種基於無線射頻識別技術的室內無線實時定位系統。這個系統的特點是在閱讀器的天線上應用了模擬一維綫相控陣列天線。系統的定位原理是基於三角測距法,透過相控陣的主波束掃描配合信號強度測量去估算出信號入射角。比較其他入射角測量的方法,應用這種方法的硬件成本更低而且能確保一定的精度。整個系統的開發包括有無線射頻標籤、閱讀器、模擬一維綫相控陣列天線、網絡控制器、數據庫、圖像應用界面及一種有效壓抑室內多徑問題的定位算法。這個系統的最大好處就是它不像其他一些現存的定位系統一樣,在安裝後需要進行大量的離線實地校準。我們進行了大量的實驗去客觀地驗證系統的定位性能,實驗的結果指出系統的定位誤差平均值小於一米。 / 為了控制系統的硬件成本,上述所提及到的模擬一維綫相控陣列天線會採用一種非常便宜的板材:FR4。但是FR4這種板材便宜的代價便是它相對較高的介質損耗。較高的介質損耗對模擬一維綫相控陣列天線的實現存在着一個重要的難題:模擬360º移相器的插入損耗相對電壓變化不平滑。有見及止,本論文的下半部會討論一種新穎而有效壓抑因高介質損耗而導致插入損耗不平滑的反射式移相器。新的移相器設計包含兩種壓抑插入損耗不平滑的技術。在仿真結果中,新的設計把傳統設計的插入損耗不平滑從1.4分貝大幅降低至0.3分貝。實驗的結果指出,在360o 的移相範圍內只存在着0.6分貝的插入損耗不平滑。 / 最後在此作一個總結。本論文主要是討論一種高效、低成本、基於無線射頻識別技術及模擬一維綫相控陣列天線技術的室內無線實時定位系統。大量的實驗數據證明了它良好的定位性能。而且系統的網絡設計使到它可以更彈性地應用到不同的場所。 / In recent years, the rapid development in wireless communication technologies, mobile computing devices and wireless networks has stimulated a fast growing interest in various location-aware systems that can provide real time information of physical locations of objects or persons. In this thesis, an active radio frequency identification (RFID) indoor positioning system utilizing analog linear phased array antenna (PAA) technology has been proposed and demonstrated. By using beam steering of an analog linear PAA and measuring the corresponding received signal strength indicator (RSSI), one can determine the angle of arrival (AoA) of the transmitted signal from a tag. In this work, a complete locationing system has been built, which includes RFID tag, reader integrated PAA, network controller and database with event driven functions. Besides that, a novel positioning algorithm that can effectively overcome indoor multipath effect is also proposed. The major advantage of the proposed system is that it doesn’t require any on-site calibration. Therefore, the setup of the proposed system is scenario-independent. A large number of experiments and results have demonstrated that the probabilities of spatial errors of less than 1 meter and 1.5 meters of the proposed system are about 80% and 95% respectively. / In order to have a cost-effective system, those analog linear PAAs are fabricated in FR4 substrate, with which constant insertion loss under phase steering of a 360º analog phase shifter is difficult to realize due to the substrate loss. In order to overcome this difficulty, a novel loss-compensated microstrip 360º reflection-type diode phase shifter with constant insertion loss has been proposed and concept proven. In this regard, two techniques have been investigated to reduce the insertion loss variation which is caused by using lossy substrate. As compared with the conventional design, simulation results have shown a considerable improvement on the insertion loss variation from 1.4dB to 0.3dB. Measurement results have demonstrated a 0.6dB insertion loss variation over 360º phase steering range. / In conclusion, a low-cost but with moderate performance RFID indoor locationing system based on analog linear PAA technology has been proposed and experimentally demonstrated. The prototype system has shown its high accuracy, flexibility in network deployment, and scenario-independent operation. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Hung, Wing Hung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references (leaves 85-87). / Abstracts also in Chinese. / ABSTRACT --- p.I / 論文摘要 --- p.III / ACKNOWLEDGEMENT --- p.V / TABLE OF CONTENT --- p.VI / LIST OF FIGURES --- p.IX / LIST OF TABLES --- p.XIII / LIST OF ABBREVIATIONS --- p.XIV / Chapter CHAPTER 1 --- INTRODUCTION --- p.1 / Chapter 1.1. --- RESEARCH MOTIVATION --- p.1 / Chapter 1.2. --- OVERVIEW OF THE THESIS ORGANIZATION --- p.5 / Chapter CHAPTER 2 --- FUNDAMENTALS IN LINEAR PHASED ARRAY ANTENNA AND REFLECTION-TYPE PHASE SHIFTER --- p.6 / Chapter 2.1. --- LINEAR PHASED ARRAY ANTENNA --- p.6 / Chapter 2.1.1. --- Operating Principle --- p.7 / Chapter 2.1.2. --- Simulation Example --- p.9 / Chapter 2.2. --- REFLECTION-TYPE PHASE SHIFTER --- p.10 / Chapter 2.2.1. --- Operating Principle --- p.10 / Chapter 2.2.2. --- Simulation Example --- p.12 / Chapter CHAPTER 3 --- CONVENTIONAL INDOOR POSITIONING METHODOLOGIES --- p.15 / Chapter 3.1. --- RSSI RANGING --- p.15 / Chapter 3.1.1. --- Radio Fingerprint --- p.15 / Chapter 3.1.2. --- Radio Propagation Model --- p.17 / Chapter 3.1.3. --- Reference Tags --- p.18 / Chapter 3.1.4. --- Ordered Signal Strength Sequence --- p.19 / Chapter 3.2. --- UWB RANGING --- p.20 / Chapter 3.3. --- NEAR FIELD ELECTROMAGNETIC RANGING (NFER) --- p.21 / Chapter CHAPTER 4 --- CONVENTIONAL 360º REFLECTION-TYPE PHASE SHIFTER DESIGNS --- p.23 / Chapter 4.1. --- PARALLELING TWO SERIES-RESONANT VARACTOR CIRCUIT --- p.23 / Chapter 4.1.1. --- 360º Phase Shift --- p.24 / Chapter 4.1.2. --- Constant Insertion Loss --- p.24 / Chapter 4.1.3. --- Performance --- p.25 / Chapter 4.2. --- PARALLELING TWO ARMS HAVING 180O PHASE CHANGE WITH 90º OUT OF PHASE --- p.27 / Chapter 4.2.1. --- Linearity and 180º Phase Shift --- p.27 / Chapter 4.2.2. --- Constant Insertion Loss --- p.29 / Chapter 4.2.3. --- 360º Phase Shift --- p.29 / Chapter 4.2.4. --- Performance --- p.30 / Chapter 4.3. --- CONNECTING TWO ARMS HAVING 180O PHASE CHANGE WITH 90O OUT OF PHASE IN-SERIES --- p.31 / Chapter 4.3.1. --- Constant Insertion Loss --- p.31 / Chapter 4.3.2. --- 360º Phase Shift --- p.32 / Chapter 4.3.3. --- Performance --- p.32 / Chapter CHAPTER 5 --- AN ACTIVE RFID INDOOR POSITIONING SYSTEM UTILIZING ANALOG LINEAR PHASED ARRAY --- p.34 / Chapter 5.1. --- POSITIONING METHODOLOGY --- p.35 / Chapter 5.2. --- SYSTEM ARCHITECTURE --- p.37 / Chapter 5.2.1. --- Analog Linear Phased Array Antenna --- p.39 / Chapter 5.3. --- POSITIONING ALGORITHM --- p.51 / Chapter 5.3.1. --- Zone Decision --- p.51 / Chapter 5.3.2. --- Point Location --- p.52 / Chapter 5.4. --- EXPERIMENTAL RESULT --- p.58 / Chapter CHAPTER 6 --- NOVEL 360º REFLECTION-TYPE DIODE PHASE SHIFTER WITH CONSTANT INSERTION LOSS UNDER LOSSY SUBSTRATE --- p.65 / Chapter 6.1. --- REVIEW --- p.66 / Chapter 6.2. --- PROBLEMS --- p.68 / Chapter 6.3. --- PROPOSED SOLUTIONS --- p.71 / Chapter 6.3.1. --- Closed Reflection Coefficient Circle --- p.71 / Chapter 6.3.2. --- Centered Reflection Coefficient Circle --- p.74 / Chapter 6.4. --- SIMULATION AND MEASUREMENT RESULT --- p.77 / Chapter CHAPTER 7 --- CONCLUSION --- p.83 / REFERENCES --- p.85 / AUTHOR’S PUBLICATIONS --- p.88 / Chapter APPENDIX 1: --- DESIGN OF RFID TAG --- p.89 / Chapter APPENDIX 2: --- DESIGN OF RFID READER --- p.98 / Chapter APPENDIX 3: --- DESIGN OF RFID CONTROLLER --- p.100

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_328396
Date January 2012
ContributorsHung, Wing Hung., Chinese University of Hong Kong Graduate School. Division of Electronic Engineering.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatelectronic resource, electronic resource, remote, 1 online resource (xiv, 101 leaves) : ill. (some col.)
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.003 seconds