It is well-known that del Pezzo surfaces of degree 9 -- n. are in one-to-one correspondence to flat En bundles over elliptic curves which are anti-canonical curves of such surfaces. In my thesis, we study a broader class of rational surfaces which are called ADE surfaces. We construct Lie algebra bundles of any type on these surfaces, and extend the above correspondence to flat G bundles over elliptic curves, where G is a simple, compact and simply-connected Lie group of any type. Concretely, we establish a natural identification between the following two very different moduli spaces for a Lie group G of any type: the moduli space of rational surfaces with G-configurations and the moduli space of flat G-bundles over a fixed elliptic curve. / Zhang, Jiajin. / "July 2007." / Adviser: Leung Nai Chung Conan. / Source: Dissertation Abstracts International, Volume: 69-01, Section: B, page: 0357. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (p. 77-79). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
Identifer | oai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_343983 |
Date | January 2007 |
Contributors | Zhang, Jiajin., Chinese University of Hong Kong Graduate School. Division of Mathematics. |
Source Sets | The Chinese University of Hong Kong |
Language | English, Chinese |
Detected Language | English |
Type | Text, theses |
Format | electronic resource, microform, microfiche, 1 online resource (79 p. : ill.) |
Rights | Use of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/) |
Page generated in 0.0017 seconds