Return to search

First principles studies on the adsorption of unsaturated organic molecules on reconstructed p(2x2) Si(100) surface. / 不飽和有機分子在p(2x2)重構硅(100)表面吸附的第一性原理研究 / CUHK electronic theses & dissertations collection / Bu bao he you ji fen zi zai p(2x2) chong gou gui (100) biao mian xi fu de di yi xing yuan li yan jiu

Styrene (C2H3-C6H5) is expected to have a more complex reaction process due to active reaction sites located in both vinyl group and phenyl group. Our exploration indicates that the adsorption products are coverage dependent. At low coverage, both vinyl group and phenyl group are possible to take part in the adsorption process. A new AsymT adsorption state covered two adjacent Si dimers is identified through two [4+2] cycloaddition. At high coverage, only vinyl group can interact with Si dimer to form cis and trans stereoisomers with different thermal energies and kinetic reaction barriers. STM images and vibrational frequencies are also explored to further support the experimental observations. / The adsorption of unsaturated organic molecules on reconstructed Si(100) surface is widely applied in the modification and functionalization of silicon surface to design new semiconductor materials. The present project is devoted to explore the adsorption mechanisms and the related properties of adsorption species for unsaturated organic molecules: acetylene (C2H 2), ethylene (C2H4), vinyl bromide (C2H 3Br) and styrene (C8H8) by quantum chemical calculation, based on density functional theory (DFT) method with pseudopotentials and plane wave basis set. / The investigation of vinyl bromide (C2H3Br) chemisorption on Si(100) resolves the conflicting conclusions between previous experimental and theoretical studies. The orientation of the vinyl bromide molecule relative to the titled silicon dimer is found to be an important factor for both the stability and reactivity of the precursor state. A new precursor pi-complex is identified, which is metastable and trapped by barriers around 0.1eV. Comparisons between theoretical and experimental vibrational frequencies support the conclusion that such a pi-complex is present on the surface at very low temperature. Careful analysis on the electronic structure also demonstrates that it is indeed a pi-complex rather than a diradical as previously suggested. Reaction mechanisms at higher vinyl bromide coverage are also modeled to explain the decrease in activation barrier observed in experiments. / The reaction processes for acetylene (C2H2) and ethylene (C2H4) chemisorption on the surface silicon dimer and the sub-layer silicon atoms are compared. Acetylene can undergo a new type of cycloaddition on sub-layer Si atoms (called sub-di-sigma) with no barrier, which is identified by ab initio Molecular Dynamics. The related properties including vibrational frequencies and STM images are calculated and found to be similar with those of the end-bridge adsorption structure. The identification of such a sub-di-sigma adsorption structure explains the discrepancy between STM experiments and theoretical calculations. In addition, the analysis of calculated vibrational frequencies, simulated STM images and the reaction barriers for di-sigma and end-bridge structures indicate that inter-dimer reaction for C2H4 is possible. / Zhang, Qiuji. / Adviser: Zhi Feng Liu. / Source: Dissertation Abstracts International, Volume: 70-09, Section: B, page: . / Thesis submitted in: October 2008. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 86-87). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_344431
Date January 2009
ContributorsZhang, Qiuju, Chinese University of Hong Kong Graduate School. Division of Chemistry.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, theses
Formatelectronic resource, microform, microfiche, 1 online resource (xiii, 89 leaves : ill.)
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0025 seconds