In the first part, some efficient algorithms are proposed to reduce the complexity of H.264 encoder, which is the latest state-of-the-art video coding standard. Intra and Inter mode decision play a vital role in H.264 encoder and can reduce the spatial and temporal redundancy significantly, but the computational cost is also high. Here, a fast Intra mode decision algorithm and a fast Inter mode decision algorithm are proposed. Experimental results show that the proposed algorithms not only save a lot of computational cost, but also maintain coding performance quite well. Moreover, a real time H.264 baseline codec is implemented on mobile device. Based on our real time H.264 codec, an H.264 based mobile video conferencing system is achieved. / The objective of this thesis is to develop some efficient and perceptual image and video coding techniques. Two parts of the work are investigated in this thesis. / The second part of this thesis investigates two kinds of perceptual picture coding techniques. One is the just noticeable distortion (JND) based picture coding. Firstly, a DCT based spatio-temporal JND model is proposed, which is an efficient model to represent the perceptual redundancies existing in images and is consistent with the human visual system (HVS) characteristic. Secondly, the proposed JND model is incorporated into image and video coding to improve the perceptual quality. Based on the JND model, a transparent image coder and a perceptually optimized H.264 video coder are implemented. Another technique is the image compression scheme based on the recent advances in texture synthesis. In this part, an image compression scheme is proposed with the perceptual visual quality as the performance criterion instead of the pixel-wise fidelity. As demonstrated in extensive experiments, the proposed techniques can improve the perceptual quality of picture coding significantly. / Wei Zhenyu. / Adviser: Ngan Ngi. / Source: Dissertation Abstracts International, Volume: 73-01, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 148-154). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
Identifer | oai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_344605 |
Date | January 2009 |
Contributors | Wei, Zhenyu., Chinese University of Hong Kong Graduate School. Division of Electronic Engineering. |
Source Sets | The Chinese University of Hong Kong |
Language | English, Chinese |
Detected Language | English |
Type | Text, theses |
Format | electronic resource, microform, microfiche, 1 online resource (xviii, 154 leaves : ill. (some col.)) |
Rights | Use of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/) |
Page generated in 0.0113 seconds