Return to search

Improving In Vivo Two Photon Microscopy Without Adaptive Optics

Two photon microscopy is one of the fastest growing methods of in-vivo imaging of the brain. It has the capability of imaging structures on the scale of 1μm. At this scale the wavelength of the imaging field (usually near infra-red), is comparable to the size of the structures being imaged, which makes the use of ray optics invalid. A better understanding is needed to predict the result of introducing different media into the light path. We use Wolf's integral, which is capable of fulfilling these needs without the shortcomings of ray optics. We predict the effects of aberrating media introduced into the light path like glass cover-slips and then correct the aberration using the same method. We also create a method to predict aberrations when the interfaces of the media in the light-path are not aligned with the propagation direction of the wavefront. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2015. / FAU Electronic Theses and Dissertations Collection

Identiferoai:union.ndltd.org:fau.edu/oai:fau.digital.flvc.org:fau_32079
ContributorsEstrada, Gerardo (author), Beetle, Christopher (Thesis advisor), Florida Atlantic University (Degree grantor), Charles E. Schmidt College of Science, Department of Physics
PublisherFlorida Atlantic University
Source SetsFlorida Atlantic University
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation, Text
Format69 p., application/pdf
RightsCopyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder., http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.002 seconds