Return to search

Phantom Study Incorporating A Diode Array Into The Treatment Planning System For Patient-Specific Quality Assurance

The purpose of this research is to accurately match the calculation environment, i.e. the treatment planning system (TPS) with the measurement environment (using a 2-D diode array) for lung Stereotactic Body Radiation Therapy (SBRT) patient-specific quality assurance (QA). Furthermore, a new phantom was studied in which the 2-D array and heterogeneities were incorporated into the patient-specific QA process for lung SBRT.
Dual source dual energy computerized tomography (DSCT) and single energy computerized tomography (SECT) were used to model phantoms incorporating a 2-D diode array into the TPS. A water-equivalent and a heterogeneous phantom (simulating the thoracic region of a patient) were studied. Monte Carlo and pencil beam dose distributions were compared to the measured distributions. Composite and individual fields were analyzed for normally incident and planned gantry angle deliveries. The distributions were compared using γ-analysis for criteria 3% 3mm, 2% 2mm, and 1% 1mm.
The Monte Carlo calculations for the DSCT modeled phantoms (incorporating the array) showed an increase in the passing percentage magnitude for 46.4 % of the fields at 3% 3mm, 85.7% at 2% 2mm, and 92.9% at 1% 1mm. The Monte Carlo calculations gave no agreement for the same γ-analysis criteria using the SECT.
Pencil beam calculations resulted in lower passing percentages when the diode array was incorporated in the TPS. The DSCT modeled phantoms (incorporating the array) exhibited decrease in the passing percentage magnitude for 85.7% of the fields at 3% 3mm, 82.1% at 2% 2mm, and 71.4% at 1% 1mm. In SECT modeled phantoms (incorporating the array), a decrease in passing percentage magnitude were found for 92.9% of the fields at 3% 3mm, 89.3% at 2% 2mm, and 82.1% at 1% 1mm.
In conclusion, this study demonstrates that including the diode array in the TPS results in increased passing percentages when using a DSCT system with a Monte Carlo algorithm for patient-specific lung SBRT QA. Furthermore, as recommended by task groups (e.g. TG 65, TG 101, TG 244) of the American Association of Physicists in Medicine (AAPM), pencil beam algorithms should be avoided in the presence of heterogeneous materials, including a diode array. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2016. / FAU Electronic Theses and Dissertations Collection

Identiferoai:union.ndltd.org:fau.edu/oai:fau.digital.flvc.org:fau_33908
ContributorsCurley, Casey Michael (author), Leventouri, Theodora (Thesis advisor), Ouhib, Zoubir (Thesis advisor), Florida Atlantic University (Degree grantor), Charles E. Schmidt College of Science, Department of Physics
PublisherFlorida Atlantic University
Source SetsFlorida Atlantic University
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation, Text
Format171 p., application/pdf
RightsCopyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder., http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0055 seconds