Return to search

Chitin Microparticles (CMPs) Induce M1 Macrophage Activation via Intracellular TLR2 Signaling Mechanism

Chitin Microparticles (CMPs, 1-10um), a special form of the ubiquitous and nontoxic
polysaccharide Chitin (GlcNAc), is capable of inducing a switch in macrophages
from the wound-healing M2 phenotype to the classically activated pro-inflammatory M1
phenotype; which has therapeutic implications in allergy and cancer. We hypothesized
that TLR2 forms a complex with CMPs and Chitin-Binding Proteins (CBPs) at the
surface of peritoneal macrophages and remains with that complex after internalization to
initiate downstream signaling events, leading to the production of the M1 cytokine, TNFalpha.
Our results from experiments performed in RAW 264.7 cells show that TLR2 and
TLR1, but not TLR6, are associated with the CMP binding fraction, and that both TLR1
and TLR2 might be important for M1 activation as a result of CMP phagocytosis. This
project sheds light on CMP as a potential therapeutic agent and provides more evidence
for a phagocytosis-dependent TLR2 signaling pathway. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2016. / FAU Electronic Theses and Dissertations Collection

Identiferoai:union.ndltd.org:fau.edu/oai:fau.digital.flvc.org:fau_33910
ContributorsDavis, Spring (author), Shibata, Yoshimi (Thesis advisor), Florida Atlantic University (Degree grantor), Charles E. Schmidt College of Medicine, Department of Biological Sciences
PublisherFlorida Atlantic University
Source SetsFlorida Atlantic University
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation, Text
Format57 p., application/pdf
RightsCopyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder., http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0021 seconds