Reduced Reproductivity and Larval Locomotion in the Absence of Methionine Sulfoxide Reductase in Drosophila

The inevitable aging process can be partially attributed to the accumulation of
oxidative damage that results from the action of free radicals. Methionine sulfoxide
reductases (Msr) are a class of enzymes that repair oxidized methionine residues. The
two known forms of Msr are MsrA and MsrB which reduce the R- and S- enantiomers of
methionine sulfoxide, respectively. Our lab has created the first genetic animal model
that is fully deficient for any Msr activity. Previously our lab showed that these animals
exhibit a 20 hour delay in development of the third instar larvae (unpublished data). My
studies have further shown that the prolonged third-instar stage is due to a reduced
growth rate associated with slower food intake and a markedly slower motility. These
Msr-deficient animals also exhibit decreased egg-laying that can be attributed to a lack of
female receptivity to mating. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2016. / FAU Electronic Theses and Dissertations Collection

Identiferoai:union.ndltd.org:fau.edu/oai:fau.digital.flvc.org:fau_33956
ContributorsSingkornrat, Diana (author), Binninger, David (Thesis advisor), Florida Atlantic University (Degree grantor), Charles E. Schmidt College of Science, Department of Biological Sciences
PublisherFlorida Atlantic University
Source SetsFlorida Atlantic University
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation, Text
Format73 p., application/pdf
RightsCopyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder., http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0105 seconds