Return to search

Development of rear-end collision avoidance in automobiles

The goal of this work is to develop a Rear-End Collision Avoidance System for automobiles. In order to develop the Rear-end Collision Avoidance System, it is stated that the most important difference from the old practice is the fact that new design approach attempts to completely avoid collision instead of minimizing the damage by over-designing cars. Rear-end collisions are the third highest cause of multiple vehicle fatalities in the U.S. Their cause seems to be a result of poor driver awareness and communication. For example, car brake lights illuminate exactly the same whether the car is slowing, stopping or the driver is simply resting his foot on the pedal. In the development of Rear-End Collision Avoidance System (RECAS), a thorough review of hardware, software, driver/human factors, and current rear-end collision avoidance systems are included. Key sensor technologies are identified and reviewed in an attempt to ease the design effort. The characteristics and capabilities of alternative and emerging sensor technologies are also described and their performance compared. In designing a RECAS the first component is to monitor the distance and speed of the car ahead. If an unsafe condition is detected a warning is issued and the vehicle is decelerated (if necessary). The second component in the design effort utilizes the illumination of independent segments of brake lights corresponding to the stopping condition of the car. This communicates the stopping intensity to the following driver. The RECAS is designed the using the LabVIEW software. The simulation is designed to meet several criteria: System warnings should result in a minimum load on driver attention, and the system should also perform well in a variety of driving conditions.
In order to illustrate and test the proposed RECAS methods, a Java program has been developed. This simulation animates a multi-car, multi-lane highway environment where car speeds are assigned randomly, and the proposed RECAS approaches demonstrate rear-end collision avoidance successfully. The Java simulation is an applet, which is easily accessible through the World Wide Web and also can be tested for different angles of the sensor.

Identiferoai:union.ndltd.org:fiu.edu/oai:digitalcommons.fiu.edu:etd-4376
Date07 December 1999
CreatorsDravidam, Uttamkumar
PublisherFIU Digital Commons
Source SetsFlorida International University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceFIU Electronic Theses and Dissertations

Page generated in 0.055 seconds