Return to search

Characterizing the Single-Walled Carbon Nanotube Dispersions: Novel Methods Development and Their Applications

Single-walled carbon nanotubes (SWCNTs) thin films exhibit great potential in various applications thanks to their extraordinary physical and mechanical properties. However, to fully take advantage of their superior properties there are still several barriers to be overcome. On one hand, SWCNTs are rarely found as isolated individual tubes, which makes them very difficult to exfoliate and disperse. On the other hand, SWCNTs are not with perfect defect-free chemical structure, which can severely degrade the intrinsic properties of the pristine SWCNTs and thus deteriorate the various SWCNT based applications. In many cases, when people perform chemical functionalization to SWCNTs, they have to find a balance between the improvement of the dispersability and compatibility of SWCNTs and the degradation of the intrinsic properties of SWCNTs. Therefore, it is crucial to have an easy-to-use and reliable way to characterize and quantify the corresponding structural information of SWCNT in dispersion such as bundle size, bundling state, defect density, etc. Two different techniques for in-situ structural characterization of SWCNTs in dispersion have been developed. The Preparative Ultracentrifuge Method (PUM) combined with dynamic light scattering (DLS) technique provides us an approach to investigate the bulk averaged SWCNT bundle size in dispersion. The Simultaneous Raman Scattering and Photoluminescence (SRSPL) technique allows us to study the bundling state/degree of exfoliation of SWCNT in dispersion. Based on the 1D exciton diffusion model, we can also use the SRSPL technique to estimate the defect density of SWCNTs in dispersion. The application of PUM and SRSPL has been demonstrated in studying the structural changes of SWCNT dispersion under different processing (sonication and ultracetrifugation) conditions. It revealed the exfoliation mechanism of SWCNT under sonication technique. Moreover, the developed PUM characterization techniques were further applied to study the interactions between SWCNT and polyacrylonitrile (PAN) homo- and copolymers. On the basis of the established PUM and SRSPL characterization methods, my proposed work focuses on an in-depth understanding of the effects of bundling states and defect density on the electrical and mechanical properties of SWCNT thin films. The detailed proposed tasks include: 1) improve the current physical model for quantifying defect density; 2) prepare and characterize the SWCNT dispersions with controlled bundle size and defect density; 3) fabricate and characterize the electrical and mechanical properties of SWCNT thin films to elucidate the effects of bundling state and defect density of SWCNTs in the dispersion. / A Dissertation submitted to the Department of Industrial Engineering in partial fulfillment of the requirements for the degree of Doctor of Philosophy. / Summer Semester, 2013. / June 27, 2013. / carbon nanotube, charaterization, defect density, polyacrylonitrile, raman,
thin film / Includes bibliographical references. / Tao Liu, Professor Directing Dissertation; Subramanian Ramakrishnan, University Representative; Zhiyong Liang, Committee Member; Jingjiao Guan, Committee Member; Mei Zhang, Committee Member.

Identiferoai:union.ndltd.org:fsu.edu/oai:fsu.digital.flvc.org:fsu_183947
ContributorsXiao, Zhiwei (authoraut), Liu, Tao (professor directing dissertation), Ramakrishnan, Subramanian (university representative), Liang, Zhiyong (committee member), Guan, Jingjiao (committee member), Zhang, Mei (committee member), Department of Industrial and Manufacturing Engineering (degree granting department), Florida State University (degree granting institution)
PublisherFlorida State University, Florida State University
Source SetsFlorida State University
LanguageEnglish, English
Detected LanguageEnglish
TypeText, text
Format1 online resource, computer, application/pdf
RightsThis Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). The copyright in theses and dissertations completed at Florida State University is held by the students who author them.

Page generated in 0.0149 seconds